gpt4 book ai didi

r - 在 Shiny 的 R 仪表板中为 ggplot2 创建动态相关输入过滤器并相应地渲染图

转载 作者:行者123 更新时间:2023-12-04 07:49:54 27 4
gpt4 key购买 nike

我正在尝试创建一个 ggplot,它根据 3 个用户输入呈现,它们应该相互依赖。
我的数据集如下所示:

Week                  Region   Movement_Type    Warehouse  f_TAT     Quantity 
April 05 - April 11 North Local ABC In TAT 10
April 05 - April 11 North Local ABC Out TAT 5
April 05 - April 11 East Local ABC In TAT 13
April 05 - April 11 East Local ABC Out TAT 6
March 01 - March 07 West Inter-State XYZ In TAT 15
March 01 - March 07 West Inter-State XYZ Out TAT 10
到目前为止我已经能够实现的目标:
我已经能够用 3 个过滤器创建 ggplot,它们现在不相互依赖。当没有选择特定过滤器时,它默认显示所有选项。但它正在绘制错误的情节
enter image description here
当我选择仓库过滤器和区域过滤器时,数据似乎发生了变化,但仍然显示错误的图。
enter image description here
我的代码帮助我实现了这一目标:
    library(plotly)
library(ggplot2)
library(dplyr)
library(reshape2)
library(gtools)

ui <- shinyUI(

navbarPage(
title = 'Dashboard',

tabPanel('Performance',
tabsetPanel(
tabPanel('Tab1',
fluidRow(
column(3,selectInput('warehouse', 'Select Warehouse', c("All",as.character(unique(plot1$Warehouse))))),
column(3,selectInput('region', 'Select Region', c("All",as.character(unique(plot1$Region))))),
column(3,selectInput('mov_type', 'Select Movement Type', c("All",as.character(unique(plot1$Movement_Type))))),
column(12,plotlyOutput("myplot_fwd_f"))
)
)
)),


tabPanel('Orders',
fluidRow(
)
)
)



)


server <- function(input, output) {

data1 <- reactive({
plot1 <- read.csv("plot1.csv", sep = ",", header = TRUE)
temp <- plot1
if (input$warehouse != "All"){
temp <- temp[temp$Warehouse == input$warehouse,]
}
if (input$region != "All"){
temp <- temp[temp$Region == input$region,]
}
if (input$mov_type != "All"){
temp <- temp[temp$Movement_Type == input$mov_type,]
}
return(temp)
})

output$myplot_fwd_f <- renderPlotly({

data <- data1()
p<- ggplot(data, aes(fill=f_TAT, y=Quantity , x=reorder(Week, + Week))) +
geom_bar(position="fill", stat="identity",colour="black") + scale_fill_manual(values=c("#44E62F", "#EC7038")) +
labs(x = "Week") +
labs(y = "Percentage") +
labs(title = "") +
scale_y_continuous(labels=scales::percent) +
geom_text(data = . %>%
group_by(Warehouse,Region,Movement_Type,Week) %>%
mutate(p = Quantity / sum(Quantity )) %>%
ungroup(),
aes(y = p, label = scales::percent(p)),
position = position_stack(vjust = 0.5),
show.legend = FALSE) +
theme(axis.text.x = element_text(angle = 10))
p <- ggplotly(p, tooltip="text")
p

})


}

shinyApp(ui, server)
我想知道是否有办法让 3 个过滤器相互依赖?截至目前,它们显示了它们可以在数据库的特定列中找到的所有唯一值。
默认情况下,当所有三个过滤器都选择了“全部”选项时,它们似乎在绘图上绘制了所有可能的组合,如何纠正这种情况。
最后,我可以将第三个“移动类型”过滤器更改为多复选框选项过滤器吗?
谢谢你。
编辑:非常感谢@YBS 我能够实现依赖过滤器的所有感谢你..@YBS 根据你在下面的评论中所述,它显示 In TAT/Out Tat 的多个 % 原因是 In 有多个值/Out TAT 特定一周。我们可以尝试显示一周的整体百分比而不是多个 In TAT/Out TAT % 吗?那将解决我最后剩下的问题。再次感谢你的帮助。
编辑 2:嗨,YBS,感谢您的更新。最终的输出现在看起来像这样。
enter image description here
似乎它仍在将其划分为不同的级别,有没有办法在一周内仅显示 1% 的 In/Out TAT。一件事我还注意到,当仅选择一个过滤器而不是所有过滤器时,第三个过滤器会显示此错误“错误:'关闭'类型的对象不是子集化的”,即使应用了过滤器的数据集。我是否需要扩展数据集以便您更好地理解?
enter image description here

最佳答案

您需要使用 updateSelectInput()更新后续 selectInput 的值s。那么你需要group_by只有Week .为了每周汇总一些数据,需要进行一些数据处理。也许这可以满足您的需求。

df <- read.table(text=
"Week, Region, Movement_Type, Warehouse, f_TAT, Quantity
April 05 - April 11, North, Local, ABC, In TAT, 10
April 05 - April 11, North, Local, ABC, Out TAT, 5
April 05 - April 11, East, Local, ABC, In TAT, 13
April 05 - April 11, East, Local, ABC, Out TAT, 6
March 01 - March 07, West, Inter-State, XYZ, In TAT, 15
March 01 - March 07, West, Inter-State, XYZ, Out TAT, 10", header=TRUE, sep=",")

library(plotly)
library(ggplot2)
library(dplyr)
library(reshape2)
library(gtools)

plot1 <- df

ui <- shinyUI(

navbarPage(
title = 'Dashboard',

tabPanel('Performance',
tabsetPanel(
tabPanel('Tab1',
fluidRow(
column(3,selectInput('warehouse', 'Select Warehouse', c("All",as.character(unique(plot1$Warehouse))))),
column(3,selectInput('region', 'Select Region', c("All",as.character(unique(plot1$Region))))),
column(3,checkboxGroupInput("mov_type","Select Movement Type", inline = TRUE, choices = c("All",unique(plot1$Movement_Type)))),
#column(3,selectInput('mov_type', 'Select Movement Type', c("All",as.character(unique(plot1$Movement_Type))))),
column(12,plotlyOutput("myplot_fwd_f"))
)
)
)),


tabPanel('Orders',
fluidRow( DTOutput("t1")
)
)
)

)


server <- function(input, output, session) {

data1 <- reactive({
plot1 <- df # read.csv("plot1.csv", sep = ",", header = TRUE)
temp <- plot1
if (input$warehouse != "All"){
temp <- temp[temp$Warehouse == input$warehouse,]
}
return(temp)
})

observeEvent(input$warehouse, {
df1 <- data1()
updateSelectInput(session,"region",choices=c("All",as.character(unique(df1$Region))))
})

data2 <- reactive({
req(input$region)
plot1 <- data1()
temp <- plot1
if (input$region != "All"){
temp <- temp[temp$Region == input$region,]
}
tmp <- temp %>%
group_by(Week) %>%
mutate(p = Quantity / sum(Quantity )) %>%
ungroup()
return(tmp)
})

observeEvent(input$region, {
df2 <- req(data2())
#updateSelectInput(session,"mov_type",choices=c("All",unique(df2$Movement_Type)) )
updateCheckboxGroupInput(session,"mov_type",choices=c("All",as.character(unique(df2$Movement_Type))), inline=TRUE, selected="All")
})

data3 <- reactive({
req(input$mov_type)
if ("All" %in% input$mov_type){
data <- data2()
}else{
data <- data2()[data2()$Movement_Type %in% input$mov_type,]
}
tmp <- data %>%
group_by(Week,f_TAT) %>%
mutate(Quantity = sum(Quantity)) %>% distinct(Week,f_TAT,Quantity) %>%
group_by(Week) %>%
mutate(p = Quantity / sum(Quantity )) %>%
ungroup()
return(tmp)
})

output$t1 <- renderDT(data3())

output$myplot_fwd_f <- renderPlotly({

data <- req(data3())

p<- ggplot(data, aes(fill=f_TAT, y=p , x=Week)) +
geom_bar(position="fill", stat="identity",colour="black") + scale_fill_manual(values=c("#44E62F", "#EC7038")) +
labs(x = "Week") +
labs(y = "Percentage") +
labs(title = "") +
scale_y_continuous(labels=scales::percent) +
geom_text(aes(y = p, label = scales::percent(p)),
position = position_stack(vjust = 0.5),
show.legend = FALSE) +
theme(axis.text.x = element_text(angle = 10))
p <- ggplotly(p) #, tooltip="text")
p

})

}

shinyApp(ui, server)
output

关于r - 在 Shiny 的 R 仪表板中为 ggplot2 创建动态相关输入过滤器并相应地渲染图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/67038683/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com