gpt4 book ai didi

python - 为什么培训师在教程中进行培训时不报告评估指标?

转载 作者:行者123 更新时间:2023-12-04 07:38:25 24 4
gpt4 key购买 nike

我正在关注本教程以了解培训师 API。
https://huggingface.co/transformers/training.html
我复制的代码如下:

from datasets import load_dataset

import numpy as np
from datasets import load_metric

metric = load_metric("accuracy")

def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)

print('Download dataset ...')
raw_datasets = load_dataset("imdb")
from transformers import AutoTokenizer

print('Tokenize text ...')
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)

print('Prepare data ...')
small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(500))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(500))
full_train_dataset = tokenized_datasets["train"]
full_eval_dataset = tokenized_datasets["test"]

print('Define model ...')
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=2)

print('Define trainer ...')
from transformers import TrainingArguments, Trainer
training_args = TrainingArguments("test_trainer", evaluation_strategy="epoch")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=small_train_dataset,
eval_dataset=small_eval_dataset,
compute_metrics=compute_metrics,
)

print('Fine-tune train ...')
trainer.evaluate()
但是,它没有报告任何有关训练指标的信息,而是报告以下消息:
Download dataset ...
Reusing dataset imdb (/Users/congminmin/.cache/huggingface/datasets/imdb/plain_text/1.0.0/4ea52f2e58a08dbc12c2bd52d0d92b30b88c00230b4522801b3636782f625c5b)
Tokenize text ...
100%|██████████| 25/25 [00:06<00:00, 4.01ba/s]
100%|██████████| 25/25 [00:06<00:00, 3.99ba/s]
100%|██████████| 50/50 [00:13<00:00, 3.73ba/s]
Prepare data ...
Define model ...
Some weights of the model checkpoint at bert-base-cased were not used when initializing BertForSequenceClassification: ['cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.bias', 'cls.predictions.decoder.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.weight']
- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-cased and are newly initialized: ['classifier.weight', 'classifier.bias']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Define trainer ...
Fine-tune train ...
100%|██████████| 63/63 [08:35<00:00, 8.19s/it]

Process finished with exit code 0
教程不是更新了吗?我应该进行一些配置更改以报告指标吗?

最佳答案

评估函数返回指标,它不打印它们。做

metrics=trainer.evaluate()
print(metrics)
工作?此外,该消息是说您正在使用基本 bert 模型,该模型未针对句子分类进行预训练,而是针对基本语言模型进行预训练。因此,它没有任务的初始化权重,应该进行训练

关于python - 为什么培训师在教程中进行培训时不报告评估指标?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/67625349/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com