- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我是 tensorflow 的新手,我正在尝试构建一个简单的模型来输出安装概率(安装列)。
这里是数据集的一个子集:
{'A': {0: 12, 2: 28, 3: 26, 4: 9, 5: 36},
'B': {0: 10, 2: 17, 3: 22, 4: 2, 5: 31},
'C': {0: 1, 2: 0, 3: 5, 4: 0, 5: 1},
'D': {0: 5, 2: 0, 3: 0, 4: 0, 5: 0},
'E': {0: 12, 2: 1, 3: 4, 4: 3, 5: 1},
'F': {0: 12, 2: 2, 3: 14, 4: 9, 5: 11},
'install': {0: 0, 2: 0, 3: 1, 4: 0, 5: 0},
'G': {0: 21, 2: 12, 3: 8, 4: 13, 5: 19},
'H': {0: 0, 2: 5, 3: 1, 4: 6, 5: 5},
'I': {0: 21, 2: 22, 3: 5, 4: 10, 5: 20},
'J': {0: 0.0, 2: 136.5, 3: 0.0, 4: 0.1, 5: 29.5},
'K': {0: 0.15220949263502456,
2: 0.08139534883720931,
3: 0.15625,
4: 0.15384584755440725,
5: 0.04188829787234043},
'L': {0: 649, 2: 379, 3: 531, 4: 660, 5: 242},
'M': {0: 0, 2: 0, 3: 0, 4: 1, 5: 1},
'N': {0: 1, 2: 1, 3: 1, 4: 0, 5: 0},
'O': {0: 0, 2: 1, 3: 0, 4: 1, 5: 0},
'P': {0: 0, 2: 0, 3: 0, 4: 0, 5: 0},
'Q': {0: 1, 2: 0, 3: 1, 4: 0, 5: 1}}
这是我正在处理的代码:
X = df.drop('install', axis=1) #data
y = df['install'] #target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42, test_size = 0.3)
X_train = ss.fit_transform(X_train)
X_test = ss.fit_transform(X_test)
model = keras.models.Sequential([
keras.layers.Flatten(),
keras.layers.Dense(128, activation='softmax'),
keras.layers.Dropout(0.2),
keras.layers.Dense(10)
])
loss = keras.losses.BinaryCrossentropy(from_logits=True)
optim = keras.optimizers.Adam(lr=0.001)
metrics = ["accuracy"]
model.compile(loss=loss, optimizer=optim, metrics=metrics)
batch_size = 32
epoch = 5
model.fit(X_train, y_train, batch_size=batch_size, epochs=epoch, shuffle=True, verbose=1)
你能帮我理解这个错误吗?我知道问题出在我的 X 和 y 的大小上。
最佳答案
注意:您尚未指定 ss
对象属于哪个类,因此我将讨论删除它的所有内容。
首先让我们讨论一下您的目标。即安装列。根据这些值,我假设您的问题是二元分类,即预测 0
和 1
,并且您希望获得它们的概率。
为此,您必须如下定义模型。
model = keras.models.Sequential([
keras.layers.Flatten(),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dropout(0.2),
keras.layers.Dense(2, activation='softmax')
])
'''
Note: I have changed the activation of the first `dense` layer from
'softmax` to `relu` as `softmax` is not ideal for inner layers as it greatly
reduce information from each node. Although having 'softmax' will not result
in any syntax error but it is methodologically wrong.
Now the next major change is changing the number of units in the last
`Dense` layer from 10 to 2. What you want is the probability of having
either 0 or 1. So if you have the have the output from your model as `[a ,
b]` here a is some value corresponding to 0 and b corresponding to 1 then
you can get probability on them using the 'softmax' activation. Without
activation the values we get are called 'logits'.
'''
# Now you have to change your loss function as below
loss = tf.keras.losses.SparseCategoricalCrossentropy()
# The rest is same. Now we run a dummy trial of the model after training it using your code.
preds = model.predict(X_test)
preds
'''
This gives the results:
array([[9.9999726e-01, 2.7777487e-06],
[9.5156413e-01, 4.8435837e-02]], dtype=float32)
This says the probability of sample 1 being 0 is '9.9999726e-01' i.e.
'0.999..' and of it being 1 is '2.7777487e-06' i.e. '0.00000277..` and these
gracefully sum up to 1. Same for the sample 2.
'''
还有另一种方法可以做到这一点。因为你只有 1 个标签,因此如果你有对应于该标签的概率,那么你可以通过从 1 中减去它来获得对应于另一个标签的概率。你可以按如下方式实现它:
model = keras.models.Sequential([
keras.layers.Flatten(),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dropout(0.2),
keras.layers.Dense(1, activation='sigmoid')
])
'''
The difference is 'softmax' and 'sigmoid' is that the 'softmax' is applied
on all the units in a unified manner but 'sigmoid' is applied on each
individual unit. So you can say that 'softmax' is the applied on the 'layer'
and 'sigmoid' is applied on the 'units'.
Now the output of the 'sigmoid' is the probability of the result being 1. So
we can say that the result could either be 0 or 1 depending on the output
probability with some threshold and hence we will not use a different loss
that is BinaryCrossEntropy as the values will be binary (either 0 or 1).
'''
loss = keras.losses.BinaryCrossentropy() # again without logits
# We once again the train the model using the rest of the code and analyze
the outputs.
preds = model.predict(X_test)
preds
'''
This gives the results:
array([[1.6424768e-13],
[2.0349980e-06]], dtype=float32)
So for sample 1 we have the probability of it being '1' as '1.6424768e-13'
and as we have only '1' and '0' the probability of it being '0' is '1 -
1.6424768e-13'. Same for the sample 2.
'''
现在从@ Mattpats 来回答.这个答案也有效,但在这种情况下,你不会得到概率作为输出,而是你会得到 logits
因为你没有使用任何 activation
并且计算了损失通过指定参数 from_logits=True
在 logits
上。对于由此产生的概率,您必须像下面这样使用它:
preds = model.predict(X_test)
sigmoid_preds = tf.math.sigmoid(preds).numpy()
preds, sigmoid_preds
'''
This give the following results:
preds = array([[-51.056973],
[-32.444508]], dtype=float32)
sigmoid_preds = array([[6.702527e-23],
[8.119502e-15]], dtype=float32)
'''
关于python - ValueError : logits and labels must have the same shape ((None, 10)与(无,1)),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/68837104/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!