- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我没有成功尝试使用 Caffe 在 Python 中实现一个简单的损失层。作为引用,我发现了几个用 Python 实现的层,包括 here , here和 here .
从 Caffe 文档/示例提供的 EuclideanLossLayer
开始,我无法让它工作并开始调试。即使使用这个简单的 TestLayer
:
def setup(self, bottom, top):
"""
Checks the correct number of bottom inputs.
:param bottom: bottom inputs
:type bottom: [numpy.ndarray]
:param top: top outputs
:type top: [numpy.ndarray]
"""
print 'setup'
def reshape(self, bottom, top):
"""
Make sure all involved blobs have the right dimension.
:param bottom: bottom inputs
:type bottom: caffe._caffe.RawBlobVec
:param top: top outputs
:type top: caffe._caffe.RawBlobVec
"""
print 'reshape'
top[0].reshape(bottom[0].data.shape[0], bottom[0].data.shape[1], bottom[0].data.shape[2], bottom[0].data.shape[3])
def forward(self, bottom, top):
"""
Forward propagation.
:param bottom: bottom inputs
:type bottom: caffe._caffe.RawBlobVec
:param top: top outputs
:type top: caffe._caffe.RawBlobVec
"""
print 'forward'
top[0].data[...] = bottom[0].data
def backward(self, top, propagate_down, bottom):
"""
Backward pass.
:param bottom: bottom inputs
:type bottom: caffe._caffe.RawBlobVec
:param propagate_down:
:type propagate_down:
:param top: top outputs
:type top: caffe._caffe.RawBlobVec
"""
print 'backward'
bottom[0].diff[...] = top[0].diff[...]
我无法让 Python 层正常工作。学习任务相当简单,因为我只是试图预测一个实数值是正数还是负数。对应的数据生成如下并写入LMDB:
N = 10000
N_train = int(0.8*N)
images = []
labels = []
for n in range(N):
image = (numpy.random.rand(1, 1, 1)*2 - 1).astype(numpy.float)
label = int(numpy.sign(image))
images.append(image)
labels.append(label)
将数据写入 LMDB 应该是正确的,因为使用 Caffe 提供的 MNIST 数据集进行的测试显示没有问题。网络定义如下:
net.data, net.labels = caffe.layers.Data(batch_size = batch_size, backend = caffe.params.Data.LMDB,
source = lmdb_path, ntop = 2)
net.fc1 = caffe.layers.Python(net.data, python_param = dict(module = 'tools.layers', layer = 'TestLayer'))
net.score = caffe.layers.TanH(net.fc1)
net.loss = caffe.layers.EuclideanLoss(net.score, net.labels)
使用手动完成求解:
for iteration in range(iterations):
solver.step(step)
对应的prototxt文件如下:
solver.prototxt
:
weight_decay: 0.0005
test_net: "tests/test.prototxt"
snapshot_prefix: "tests/snapshot_"
max_iter: 1000
stepsize: 1000
base_lr: 0.01
snapshot: 0
gamma: 0.01
solver_mode: CPU
train_net: "tests/train.prototxt"
test_iter: 0
test_initialization: false
lr_policy: "step"
momentum: 0.9
display: 100
test_interval: 100000
train.prototxt
:
layer {
name: "data"
type: "Data"
top: "data"
top: "labels"
data_param {
source: "tests/train_lmdb"
batch_size: 64
backend: LMDB
}
}
layer {
name: "fc1"
type: "Python"
bottom: "data"
top: "fc1"
python_param {
module: "tools.layers"
layer: "TestLayer"
}
}
layer {
name: "score"
type: "TanH"
bottom: "fc1"
top: "score"
}
layer {
name: "loss"
type: "EuclideanLoss"
bottom: "score"
bottom: "labels"
top: "loss"
}
test.prototxt
:
layer {
name: "data"
type: "Data"
top: "data"
top: "labels"
data_param {
source: "tests/test_lmdb"
batch_size: 64
backend: LMDB
}
}
layer {
name: "fc1"
type: "Python"
bottom: "data"
top: "fc1"
python_param {
module: "tools.layers"
layer: "TestLayer"
}
}
layer {
name: "score"
type: "TanH"
bottom: "fc1"
top: "score"
}
layer {
name: "loss"
type: "EuclideanLoss"
bottom: "score"
bottom: "labels"
top: "loss"
}
我尝试追踪它,在 TestLayer
的 backward
和 foward
方法中添加调试消息,只有 forward
方法(请注意,不执行任何测试,调用只能与求解相关)。同样,我在
python_layer.hpp
中添加了调试消息:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
LOG(INFO) << "cpp forward";
self_.attr("forward")(bottom, top);
}
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
LOG(INFO) << "cpp backward";
self_.attr("backward")(top, propagate_down, bottom);
}
同样,只执行前向传球。当我删除 TestLayer
中的 backward
方法时,求解仍然有效。删除 forward
方法时,由于未实现 forward
会引发错误。我希望 backward
也是如此,因此似乎根本不会执行向后传递。切换回常规层并添加调试消息,一切正常。
我感觉我遗漏了一些简单或基本的东西,但我已经好几天没能解决问题了。因此,感谢任何帮助或提示。
谢谢!
最佳答案
这是预期的行为,因为您的 python 层“下方”没有任何实际需要梯度来计算权重更新的层。 Caffe 注意到了这一点并跳过了这些层的反向计算,因为这会浪费时间。
如果在网络初始化时需要在日志中进行反向计算,则 Caffe 会打印所有层。在您的情况下,您应该看到如下内容:
fc1 does not need backward computation.
如果您在“Python”层下方放置“InnerProduct”或“Convolution”层(例如,Data->InnerProduct->Python->Loss
),则反向计算变得必要,而您的反向计算方法被调用。
关于neural-network - Caffe Python层中的向后传递未被调用/工作?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40540106/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!