gpt4 book ai didi

linear-algebra - 在 Eigen3 中实现 Bartels–Stewart 算法?

转载 作者:行者123 更新时间:2023-12-04 06:41:30 27 4
gpt4 key购买 nike

过去,当我需要求解西尔维斯特方程时,AX + XB = C,我使用了 scipy 的函数,solve_sylvester [1],这显然是通过使用 Bartels-Stewart 算法将事物转化为上三角形式,然后使用 lapack 求解方程。

我现在需要使用 eigen 求解方程。 eigen 提供了一个函数,matrix_function_solve_triangular_sylvester [2],它在文档中看起来类似于 lapack 函数,scipy调用。我试图在 eigen3 中准确翻译 scipy 的实现,但最终我对 X 的值不满足等式。这是我的实现:

#include <iostream>

#include <Eigen/Core>
#include <Eigen/Eigenvalues>
#include <unsupported/Eigen/MatrixFunctions>

int main()
{

Eigen::Matrix<double, 3, 3> A;
A << -17, -6, 0,
-15, 6, 14,
9, -12, 19;

Eigen::Matrix<double, 5, 5> B;
B << 5, -17, -12, 16, 11,
-4, 19, -1, 9, 13,
1, 3, 5, -5, 2,
8, -15, 5, 14, -12,
-2, -4, 13, -8, -17;

Eigen::Matrix<double, 3, 5> Q;
Q << 6, 5, -17, 12, 4,
-11, 15, 8, 1, 7,
15, -3, 9, -19, -10;

Eigen::RealSchur<Eigen::MatrixXd> SchurA(A);
Eigen::MatrixXd R = SchurA.matrixT();
Eigen::MatrixXd U = SchurA.matrixU();

Eigen::RealSchur<Eigen::MatrixXd> SchurB(B.transpose());
Eigen::MatrixXd S = SchurB.matrixT();
Eigen::MatrixXd V = SchurB.matrixU();

Eigen::MatrixXd F = (U.transpose() * Q) * V;

Eigen::MatrixXd Y =
Eigen::internal::matrix_function_solve_triangular_sylvester(R, S, F);

Eigen::MatrixXd X = (U * Y) * V.transpose();

Eigen::MatrixXd Q_calc = A * X + X * B;

std::cout << Q_calc - Q << std::endl;
// Should be all zeros, but instead getting:
// 421.868 193.032 -208.273 42.7449 -3.57527
//-1651.66 -390.314 2043.59 -1611.1 -1843.91
//-67.4093 207.414 1168.89 -1240.54 -1650.48

return EXIT_SUCCESS;

}

知道我做错了什么吗?

[1] https://github.com/scipy/scipy/blob/v0.15.1/scipy/linalg/_solvers.py#L23

[2] https://bitbucket.org/eigen/eigen/src/dbb0b1f3b07a261d01f43f8fb94e85ceede9fac7/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h?at=default#lines-274

最佳答案

您的 AB 矩阵具有非实数特征值,因此它们的 RealSchur 分解将是非三角形的(仅“准三角形” ",即它在对角线上包含一个 2x2 block )。如果你编译时没有使用 -DNDEBUG,你应该得到这样的断言:

../eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h:277: MatrixType Eigen::internal::matrix_function_solve_triangular_sylvester(const MatrixType&, const MatrixType&, const MatrixType&) [with MatrixType = Eigen::Matrix<double, -1, -1>]: Assertion `A.isUpperTriangular()' failed.

我不知道,如果有一个 Sylvester 求解器也可以处理类三角矩阵,但使用 Eigen 方法的最简单的解决方案是使用 ComplexSchur 分解(也使用 adjoint() 而不是 transpose() —— 并且不要转置 B:

Eigen::ComplexSchur<Eigen::MatrixXd> SchurA(A);
Eigen::MatrixXcd R = SchurA.matrixT();
Eigen::MatrixXcd U = SchurA.matrixU();

Eigen::ComplexSchur<Eigen::MatrixXd> SchurB(B);
Eigen::MatrixXcd S = SchurB.matrixT();
Eigen::MatrixXcd V = SchurB.matrixU();

Eigen::MatrixXcd F = (U.adjoint() * Q) * V;

Eigen::MatrixXcd Y =
Eigen::internal::matrix_function_solve_triangular_sylvester(R, S, F);

Eigen::MatrixXcd X = (U * Y) * V.adjoint();

Eigen::MatrixXcd Q_calc = A * X + X * B;

我认为 X 应该总是真实的,所以你可以将最后两行替换为

Eigen::MatrixXd X = ((U * Y) * V.adjoint()).real();

Eigen::MatrixXd Q_calc = A * X + X * B;

关于linear-algebra - 在 Eigen3 中实现 Bartels–Stewart 算法?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56929966/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com