- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我们是两个想要使用一类 svm 来检测文本文档中的摘要有值(value)的句子的学生。我们已经为句子实现了句子相似度函数,我们已将其用于另一种算法。我们现在想要在 libsvm for java 中使用与内核相同的函数来实现一类 svm。
我们正在使用 PRECOMPUTED
kernel_type
的枚举我们的领域 svm_parameter
(参数)。在我们的 svm_problem
的 x 字段中(prob) 我们有以下形式的核矩阵:
0:i 1:K(xi,x1) ... L:K(xi,xL)
K(x,y)
是
x
相似度的核值和
y
,
L
是要比较的句子数和
i
是当前行索引(
0
到
L
)。
svm.svm_train(prob, param)
) 似乎有时会“陷入”无限循环。
PRECOMPUTED
枚举,还是问题出在其他地方?
最佳答案
我们解决了这个问题
事实证明,第一列中的“系列号”需要来自 1
至 L
,不是 0
至 L-1
,这是我们最初的编号。我们通过检查 svm.java
中的来源发现了这一点。 :
double kernel_function(int i, int j)
{
switch(kernel_type)
{
/* ... snip ...*/
case svm_parameter.PRECOMPUTED:
return x[i][(int)(x[j][0].value)].value;
/* ... snip ...*/
}
}
K(i,j)
时,行的第一列用作列索引。 .
double[][] K = new double[][] {
double[] { 1, 1.0, 0.1, 0.0, 0.2 },
double[] { 2, 0.5, 1.0, 0.1, 0.4 },
double[] { 3, 0.2, 0.3, 1.0, 0.7 },
double[] { 4, 0.6, 0.5, 0.5, 1.0 }
};
K(i,j)
比如说
i=1
和
j=3
.表达式
x[i][(int)(x[j][0].value)].value
将分解为:
x[i] -> x[1] -> second row in K -> [2, 0.5, 1.0, 0.1, 0.4]
x[j][0] -> x[3][0] -> fourth row, first column -> 4
x[i][(int)(x[j][0].value)].value -> x[1][4] -> 0.4
关于java - 在 libsvm 中使用预先计算的内核会导致它卡住,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/9891345/
我正在考虑使用 LibSVM我正在创建所需的特征向量。 在几乎所有的示例数据中,特征都有一个顺序,例如: +1 1:3 2:1 3:5 4:2 10:8 想知道这个顺序是否重要,例如: +1 4:2
对于相同的数据集和参数,LibSVM 和 scikit-learn 的 SVM 实现的精度不同,尽管 scikit-learn also uses LibSVM internally 。 我忽略了什么
当我打开 LIBSVM 训练数据的示例文件时,我无法理解文件结构。有人可以告诉我如何制作吗? 以下是我用于预测歌曲的歌曲作者的训练数据(作为示例): 特征1:歌词中“爱”字的数量 特征2:歌词中“ f
当我打开 LIBSVM 训练数据的示例文件时,我无法理解文件结构。有人可以告诉我怎么做吗? 下面是我预测歌曲作者的训练数据(作为例子): 特征一:歌词中“爱”字的数量 特征2:歌词中“ friend
我是 python 的新手,我正在尝试使用 libsvm。我正在尝试在 grid.py 的帮助下进行交叉验证。我从数据库中获取数据,因此它不是稀疏形式。有什么办法可以按照grid.py中数据格式的要求
我有一个 LIBSVM 缩放模型(使用 svm-scale 生成),我想将它移植到 PySpark。我天真地尝试了以下方法: scaler_path = "path to model" a = Min
我不明白LIBLINEAR API中bias参数的含义。为什么在训练时由用户指定?难道它不应该只是从分离超平面到原点的距离,这是学习模型的参数吗? 这来自自述文件: struct problem {
对于 LibSVM。 在'A Practical Guide to Support Vector Classification'中建议使用m数来表示m-category属性。例如 {red, gree
是否有任何脚本可以将制表符分隔的数据文件转换为 libSVM 数据格式?例如我未标记的数据: -1 9.45 1.44 8.90 -1 8.12 7.11 8.90-1 8.11 6.12 8.78
我的数据有一个奇怪的结果,我想知道您或其他任何人是否对此有任何见解.. 我有大约 5000 个数据和大约 16000 个属性,我用每个类的 2000 个数据(我只有两个类)训练了我的 RBF svm(
我想知道为什么 libSVM 在使用或不使用概率进行预测时会给出不同的准确度结果,并且我在 this page 找到了常见问题解答其中说 Q: Why using svm-predict -b 0 a
我正在使用 LIBSVM for matlab。当我使用回归 SVM 时,它输出的概率估计是一个空矩阵,而在使用分类时此功能运行良好。这是正常行为吗,因为在 LIBSVM 自述文件中它说: -b pr
我想知道为什么 libSVM 在使用或不使用概率进行预测时会给出不同的准确度结果,并且我在 this page 找到了常见问题解答其中说 Q: Why using svm-predict -b 0 a
我已经扩展了我的训练数据并尝试进行交叉验证以获得最佳参数,但我不知道该怎么做。我尝试读取缩放后的训练数据并将它们分配给 svm_problem 变量: svm_node My_svm_node[164
我正在使用 LibSVM 进行一些多类分类。我使用 LibSVM 的 MATLAB 接口(interface)训练模型。然后,我以 C 语言可以识别的格式保存该模型。现在我想在 C 语言中使用 svm
我的目标是制作一个多类分类器,用于处理不同的文件,这些文件将标记至少两个类(或标签)。这些文件是议会倡议的,因此每个文件都将在同义词库中以至少一对值进行索引。 我在Python版本中使用“libsvm
我打算在 MATLAB 中安装 libSVM 并下载了该文件。 但是在 MATLAB 中似乎已经有了函数,svmtrain、svmpredict 等等。 MATLAB 是否已附带 LIBSVM? 最佳
我想使用从 Libsvm 模型派生的参数来预测新数据(不是在 matlab 中)。我想问模型中的支持向量(nSV,sv_coef,SVs)是否是按照模型中Label的顺序排列的?下面是使用线性核从fi
我有一个数据集,负标签值的数量是正标签值数量的 163 倍,所以我有一个不平衡的数据集。我已经尝试过了: model = svmtrain(trainLabels, trainFeatures, '-
我正在使用 libsvm 进行多元回归。我有一些缺失值的数据。例如,我有 10 个实例,每个实例有 10 个节点,每个节点有 10 个与其关联的链接。我需要使用 10 个实例来训练这 10 个节点。但
我是一名优秀的程序员,十分优秀!