- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我尝试在 Spark 2.0.2 上使用 Scala 上的 UserDefinedAggregateFunction
,但我遇到了匹配错误。我创建了以下内容作为测试用例,我正在编写的代码执行与以下内容类似的操作。
我正在尝试通过聚合窗口累积一个值。这不仅仅是一个累加和,但我需要根据某些条件计算要保留的数量。
作为测试用例,我创建了一个摊销表,我必须在其中计算每个月的期初和期末余额。
数据如下:
+------+--------+------------+---------+
|Period| Capital|InterestRate|Repayment|
+------+--------+------------+---------+
|201601| 0.00 | 0.10 | 0.00 |
|201602|1000.00 | 0.00 | 0.00 |
|201603|2000.00 | 0.10 | 0.00 |
|201604| 0.00 | 0.10 | -200.00 |
|201605| 0.00 | 0.10 | -200.00 |
|201606| 0.00 | 0.10 | -200.00 |
|201607| 0.00 | 0.10 | -200.00 |
|201608| 0.00 | 0.00 | -200.00 |
|201609| 0.00 | 0.10 | -200.00 |
|201610| 0.00 | 0.10 | -200.00 |
|201611| 0.00 | 0.10 | -200.00 |
|201612| 0.00 | 0.10 | -200.00 |
+------+--------+------------+---------+
我无法正确设置 CSV 格式,但我已将其添加到此处的要点:https://gist.github.com/nevi-me/8b2362a5365e73af947fc13bb5836adc .
我正在尝试计算期初
和期末
余额,然后从聚合中返回期末
余额。
package me.nevi
import org.apache.spark.sql._
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction, Window}
import org.apache.spark.sql.types.{StructType, DoubleType, DataType}
object AggregationTest {
object amortisedClosingBalance extends UserDefinedAggregateFunction {
override def inputSchema: StructType = new StructType().add("Capital", DoubleType).add("InterestRate", DoubleType).add("Repayment", DoubleType)
override def bufferSchema: StructType = new StructType().add("Opening", DoubleType).add("Closing", DoubleType)
override def dataType: DataType = new StructType().add("Closing", DoubleType)
override def deterministic: Boolean = true
override def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer.update(0, 0.0)
buffer.update(1, 0.0)
}
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
if (!input.isNullAt(0)) {
println(buffer.get(0))
println(buffer.get(1))
buffer.update(0, buffer.getDouble(1))
// (opening + capital) * interestrate - repayment
buffer.update(1, (buffer.getDouble(0) + input.getDouble(0)) * input.getDouble(1) + input.getDouble(2))
} else {
// if first record?
buffer.update(0, input.getDouble(0))
buffer.update(1, input.getDouble(0))
}
}
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
buffer1.update(0, buffer1.getDouble(0))
buffer1.update(1, buffer1.getDouble(1))
}
override def evaluate(buffer: Row): Any = {
buffer.getDouble(1)
}
}
def main(args: Array[String]): Unit = {
System.setProperty("hadoop.home.dir", "C:/spark")
System.setProperty("spark.sql.warehouse.dir", "file:///tmp/spark-warehouse")
val spark: SparkSession = SparkSession.builder()
.master("local[*]")
.appName("Aggregation Test")
.getOrCreate()
import spark.implicits._
val df = spark.read.option("header", true).csv("file:///d:/interest_calc.csv")
df.show()
val windowSpec = Window.orderBy(df.col("Period"))
val calc = df.withColumn("Closing", amortisedClosingBalance($"Capital", $"InterestRate", $"Repayment").over(windowSpec))
calc.show()
}
}
我得到异常:
scala.MatchError: 0.0 (of class java.lang.Double)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:256)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:251)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$CatalystTypeConverter.toCatalyst(CatalystTypeConverters.scala:103)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$$anonfun$createToCatalystConverter$2.apply(CatalystTypeConverters.scala:403)
at org.apache.spark.sql.execution.aggregate.ScalaUDAF.eval(udaf.scala:440)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificMutableProjection.apply(Unknown Source)
at org.apache.spark.sql.execution.AggregateProcessor.evaluate(WindowExec.scala:1029)
at org.apache.spark.sql.execution.UnboundedPrecedingWindowFunctionFrame.write(WindowExec.scala:822)
at org.apache.spark.sql.execution.WindowExec$$anonfun$15$$anon$1.next(WindowExec.scala:398)
at org.apache.spark.sql.execution.WindowExec$$anonfun$15$$anon$1.next(WindowExec.scala:289)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:246)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$4.apply(SparkPlan.scala:240)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:803)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:803)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
有谁知道我做错了什么?我最初使用的是 Spark 2.0.0,我遇到了其他人也有类似的 UDTF 问题,建议升级到 2.0.1,但是升级后;我的问题仍然存在。
根据已接受的答案,问题出在我的架构上。以下是计算正常的片段。
package me.nevi
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction, Window}
import org.apache.spark.sql.types.{DataType, DoubleType, StructType}
object AggregationTest {
object amortisedClosingBalance extends UserDefinedAggregateFunction {
override def inputSchema: StructType = new StructType().add("Capital", DoubleType).add("InterestRate", DoubleType).add("Repayment", DoubleType)
override def bufferSchema: StructType = new StructType().add("Opening", DoubleType).add("Closing", DoubleType)
override def dataType: DataType = new StructType().add("Opening", DoubleType).add("Closing", DoubleType)
override def deterministic: Boolean = true
override def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer.update(0, 0.0)
buffer.update(1, 0.0)
}
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
if (!input.isNullAt(0)) {
println(buffer.get(0))
println(buffer.get(1))
buffer.update(0, buffer.getDouble(1))
// (opening + capital) * interestrate - repayment
buffer.update(1, input.getDouble(0)
+ buffer.getDouble(0) + input.getDouble(2) + (buffer.getDouble(0) + input.getDouble(0)) * (input.getDouble(1) / 12))
} else {
// if first record?
buffer.update(0, input.getDouble(0))
buffer.update(1, input.getDouble(0))
}
}
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
buffer1.update(0, buffer1.getDouble(0))
buffer1.update(1, buffer1.getDouble(1))
}
override def evaluate(buffer: Row): Any = {
Row(buffer.getDouble(0), buffer.getDouble(1))
}
}
def main(args: Array[String]): Unit = {
System.setProperty("hadoop.home.dir", "C:/spark")
System.setProperty("spark.sql.warehouse.dir", "file:///tmp/spark-warehouse")
val spark: SparkSession = SparkSession.builder()
.master("local[*]")
.appName("Aggregation Test")
.getOrCreate()
import spark.implicits._
val df = spark.read.option("header", true).csv("file:///d:/interest_calc.csv")
df.show()
val windowSpec = Window.orderBy(df.col("Period").asc)
var calc = df.withColumn("Calcs", amortisedClosingBalance($"Capital", $"InterestRate", $"Repayment").over(windowSpec))
calc = calc.withColumn("Opening", round($"Calcs".getField("Opening"), 2)).withColumn("Closing", round($"Calcs".getField("Closing"),2))
.drop("Calcs")
calc.show()
}
}
结果如下:
+------+--------+------------+---------+-------+-------+
|Period| Capital|InterestRate|Repayment|Opening|Closing|
+------+--------+------------+---------+-------+-------+
|201601| 0.00 | 0.10 | 0.00 | 0.0| 0.0|
|201602|1000.00 | 0.00 | 0.00 | 0.0| 1000.0|
|201603|2000.00 | 0.10 | 0.00 | 1000.0| 3025.0|
|201604| 0.00 | 0.10 | -200.00 | 3025.0|2850.21|
|201605| 0.00 | 0.10 | -200.00 |2850.21|2673.96|
|201606| 0.00 | 0.10 | -200.00 |2673.96|2496.24|
|201607| 0.00 | 0.10 | -200.00 |2496.24|2317.05|
|201608| 0.00 | 0.00 | -200.00 |2317.05|2117.05|
|201609| 0.00 | 0.10 | -200.00 |2117.05|1934.69|
|201610| 0.00 | 0.10 | -200.00 |1934.69|1750.81|
|201611| 0.00 | 0.10 | -200.00 |1750.81| 1565.4|
|201612| 0.00 | 0.10 | -200.00 | 1565.4|1378.44|
+------+--------+------------+---------+-------+-------+
最佳答案
由于 dataType
定义不正确,您得到一个异常。您将其声明为:
StructType(StructField(Closing,DoubleType,true))
实际上你返回的是一个标量。它应该被定义为:
override def dataType: DataType = DoubleType
或者您应该重新定义evalute
,例如:
override def evaluate(buffer: Row): Any = {
Row(buffer.getDouble(1))
}
后者将返回一个嵌套列:
|-- Closing: struct (nullable = true)
| |-- Closing: double (nullable = true)
所以这可能不是您要找的。
关于scala - Spark UserDefinedAggregateFunction : scala. MatchError 0.0(类 java.lang.Double),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40717153/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!