- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 ggvis 为 2014 赛季创建 NFL 赛程强度图表。数据来自 FootballOutsiders.com,稍后我将制作一个 Shiny 应用程序,当它在赛季期间更新时,它会自动从网站上抓取数据。下面的例子非常接近,但我想做一些修改。我想要...
add_scale()
和
props()
,但到目前为止没有任何效果。
df <- structure(list(team = c("ARI", "ATL", "BAL", "BUF", "CAR", "CHI",
"CIN", "CLE", "DAL", "DEN", "DET", "GB", "HOU", "IND", "JAX",
"KC", "MIA", "MIN", "NE", "NO", "NYG", "NYJ", "OAK", "PHI", "PIT",
"SD", "SEA", "SF", "STL", "TB", "TEN", "WAS"), w1 = c(17.5, -5.8,
-12.6, 8.7, -6.8, -13.8, -8.7, 4, -4.6, 0.9, -11.4, -25.9, 4.2,
-0.2, 4.9, 4.2, 4.2, -5.7, 2.4, 13.5, -0.8, 10.3, -5.6, 10.9,
8.2, -16.4, 14.4, 13.8, 10.5, -15.7, -6.7, 2.5), w2 = c(-11.4,
-12.6, 4, 2.4, -0.8, -4.6, 13.5, -5.8, 4.2, -6.7, -15.7, -5.6,
10.3, 4.9, 4.2, -0.2, -13.8, 4.2, 10.5, 8.2, -16.4, 14.4, 2.5,
0.9, -8.7, -25.9, 17.5, 8.7, -6.8, -5.7, 13.8, 10.9), w3 = c(-4.6,
-6.8, 8.2, 17.5, 4, -5.6, 4.2, -8.7, -5.7, -25.9, 14.4, -0.8,
-11.4, 10.9, 0.9, 2.4, -6.7, -5.8, 10.3, 10.5, 2.5, 8.7, 4.2,
4.2, -15.7, -13.8, -0.2, -16.4, 13.8, 13.5, -12.6, 4.9), w4 = c(NA,
10.5, -15.7, 2.5, -8.7, 14.4, NA, NA, -5.8, NA, -5.6, 8.7, -13.8,
4.2, 17.5, 4.2, 10.3, 13.5, -6.7, 13.8, 4.2, -0.8, 2.4, -4.6,
-6.8, 10.9, NA, 4.9, NA, 4, 0.9, -11.4), w5 = c(-0.2, -11.4,
0.9, -0.8, 8.7, -15.7, 4.2, 4.2, 2.5, -16.4, -13.8, 10.5, 13.8,
-8.7, 4, -4.6, NA, 14.4, -12.6, -6.8, 13.5, 17.5, NA, -5.7, 10.9,
-5.6, 4.2, -6.7, 4.9, -5.8, 8.2, -25.9), w6 = c(4.2, 8.7, -6.8,
4.2, -12.6, 13.5, -15.7, 4, -25.9, -5.6, 10.5, 2.4, 0.9, 2.5,
4.2, NA, 14.4, -0.8, -13.8, NA, 4.9, -0.2, 17.5, -11.4, 8.2,
10.3, 13.8, -5.7, -4.6, -8.7, 10.9, -16.4), w7 = c(10.3, -8.7,
13.5, 10.5, 14.4, 2.4, 0.9, 10.9, -11.4, -4.6, -5.8, -15.7, 4,
-12.6, 8.2, 17.5, 8.7, -13.8, -5.6, -0.8, 13.8, 4.2, -16.4, NA,
2.5, -6.7, -5.7, -0.2, -25.9, NA, 4.2, 4.2), w8 = c(4.9, -0.8,
-12.6, -5.6, -25.9, 4.2, -8.7, 10.3, 4.2, 17.5, 13.5, -5.8, 4.2,
4, 2.4, -5.7, 10.9, -6.8, 8.7, 14.4, NA, -13.8, 8.2, -16.4, 0.9,
-0.2, -15.7, NA, -6.7, 10.5, 2.5, 13.8), w9 = c(13.8, NA, 4,
NA, -5.8, NA, 10.9, -6.8, -16.4, 4.2, NA, NA, 4.9, -11.4, -12.6,
-5.6, 17.5, 4.2, -0.2, -15.7, 0.9, -6.7, -25.9, 2.5, -8.7, 2.4,
10.3, -5.7, -4.6, 8.2, NA, 10.5), w10 = c(-5.7, -6.8, 4.2, -6.7,
4.9, 14.4, 8.2, -12.6, 10.9, 10.3, 2.4, 8.7, NA, NA, 13.8, -13.8,
-0.8, NA, NA, -4.6, -25.9, 4, -0.2, -15.7, -5.6, NA, -11.4, -5.8,
-16.4, 13.5, -8.7, NA), w11 = c(-0.8, -15.7, NA, 2.4, 13.5, 10.5,
-5.8, 2.5, NA, -5.7, -16.4, 4.9, 8.2, 4.2, NA, -25.9, -13.8,
8.7, 0.9, -12.6, -4.6, NA, 17.5, 14.4, 4.2, 10.3, -6.7, -11.4,
-0.2, 4.2, 4, -6.8), w12 = c(-25.9, 8.2, -5.8, -5.6, NA, -6.8,
2.5, 13.5, -11.4, 2.4, 4.2, 10.5, -12.6, 10.9, 0.9, 10.3, -0.2,
14.4, -0.8, -8.7, 13.8, -13.8, -6.7, 4.2, NA, -5.7, -16.4, 4.2,
17.5, 8.7, 4.9, -4.6), w13 = c(13.5, -16.4, 17.5, 8.2, 10.5,
-0.8, -6.8, -13.8, 4.9, -6.7, 8.7, 4.2, 4.2, 4.2, -11.4, -0.2,
-5.6, -15.7, 14.4, 4, 10.9, 2.4, -5.7, 13.8, -5.8, -8.7, -4.6,
-25.9, 10.3, -12.6, 2.5, 0.9), w14 = c(-6.7, 14.4, 2.4, -0.2,
-5.8, 13.8, 4, 0.9, 8.7, -13.8, -6.8, 13.5, 10.9, 8.2, 2.5, -16.4,
-8.7, -5.6, 17.5, -15.7, 4.2, 10.5, -4.6, -25.9, -12.6, 4.2,
4.9, 10.3, 4.2, -0.8, -11.4, -5.7), w15 = c(-5.7, 4, 10.9, 14.4,
-6.8, -5.8, 8.2, -12.6, 4.9, 17.5, 10.5, -13.8, 0.9, 2.5, -8.7,
10.3, 4.2, -0.8, 2.4, 8.7, 4.2, 4.2, -6.7, 13.8, 13.5, -0.2,
-4.6, -25.9, -16.4, -15.7, -5.6, -11.4), w16 = c(-25.9, -5.8,
2.5, 10.3, 8.2, -0.8, -0.2, -15.7, 0.9, -12.6, 8.7, -6.8, -8.7,
13.8, 4.2, 4, 10.5, 2.4, -5.6, 13.5, -5.7, 4.2, -13.8, 4.2, -6.7,
-4.6, -16.4, 17.5, -11.4, 14.4, 10.9, 4.9), w17 = c(-4.6, -15.7,
8.2, 4.2, 13.5, 10.5, 4, -8.7, 4.2, 10.3, 14.4, -0.8, 10.9, 4.2,
2.5, 17.5, -5.6, 8.7, -13.8, -6.8, 4.9, 2.4, -0.2, -11.4, -12.6,
-6.7, -5.7, -16.4, -25.9, -5.8, 0.9, 13.8)), .Names = c("team",
"w1", "w2", "w3", "w4", "w5", "w6", "w7", "w8", "w9", "w10",
"w11", "w12", "w13", "w14", "w15", "w16", "w17"), row.names = c(NA,
32L), class = "data.frame")
require(dplyr)
require(ggvis)
require(tidyr) # For the gather function
df2 <- df %>% gather(key, value, w1:w17)
names(df2) <- c("team", "week", "defense")
df2 %>%
ggvis(~week, ~team, fill = ~defense) %>%
layer_rects(width = band(), height = band()) %>%
scale_nominal("x", padding = 0, points = FALSE) %>%
scale_nominal("y", padding = 0, points = FALSE)
最佳答案
我通过创建一个新变量 def.color
为每个单元格设置颜色映射 defense
的每个值到特定的颜色。在 ggplot2
您可以直接在调用中设置颜色 ggplot
使用一行代码,例如scale_fill_manual()
,而不是向数据框添加颜色变量。我希望有一种方法可以在 ggvis
中做到这一点,但我还没有找到。所以,现在,我们开始:
# Create a new variable df2$def.color for mapping df2$defense values to colors
# Functions to create color ramps for the blue and orange color ranges
Blue = colorRampPalette(c("darkblue","lightblue"))
Orange = colorRampPalette(c("orange","darkorange3"))
# Negative values of defense get a blue color scale with 10 colors
df2$def.color[!is.na(df2$defense) & df2$defense<0] =
as.character(cut(df2$defense[!is.na(df2$defense) & df2$defense<0],
seq(min(df2$defense - 0.1, na.rm=TRUE), 0, length.out=11),
labels=Blue(10)))
# Positive values of defense get an orange color scale with 10 colors
df2$def.color[!is.na(df2$defense) & df2$defense>=0] =
as.character(cut(df2$defense[!is.na(df2$defense) & df2$defense>=0],
seq(0, max(df2$defense, na.rm=TRUE)+0.1, length.out=11),
labels=Orange(10)))
# Set NA values in df2$def.color to light gray in df2$def.color
df2$def.color[is.na(df2$defense)] = "#E5E5E5"
# Set NA values in df2$defense to blanks so that we won't get "NaN" in cells with
# missing data
df2$defense[is.na(df2$defense)] = ""
def.color
至
fill
使用
:=
覆盖默认颜色。添加
defense
的值使用
layer_text
.我对每个单元格中的文本位置不满意,但这是我目前能想到的最好的。
df2 %>%
ggvis(~week, ~team, fill:=~def.color) %>%
layer_rects(width = band(), height = band()) %>%
scale_nominal("x", padding = 0, points = FALSE) %>%
scale_nominal("y", padding = 0, points = FALSE) %>%
layer_text(text:=~defense, stroke:="white", align:="left", baseline:="top")
关于r - ggvis 中的自定义填充颜色(和其他选项),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24810470/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!