gpt4 book ai didi

apache-spark - 在 spark 中获取树模型的叶子概率

转载 作者:行者123 更新时间:2023-12-04 05:23:51 28 4
gpt4 key购买 nike

我正在尝试重构一个训练有素的基于 Spark 树的模型(RandomForest 或 GBT 分类器),使其可以在没有 Spark 的环境中导出。 toDebugString方法是一个很好的起点。但是,在 RandomForestClassifier 的情况下,字符串只显示每棵树的预测类别,没有相对概率。所以,如果你对所有树的预测进行平均,你会得到一个错误的结果。

一个例子。我们有一个 DecisionTree以这种方式表示:

DecisionTreeClassificationModel (uid=dtc_884dc2111789) of depth 2 with 5 nodes
If (feature 21 in {1.0})
Predict: 0.0
Else (feature 21 not in {1.0})
If (feature 10 in {0.0})
Predict: 0.0
Else (feature 10 not in {0.0})
Predict: 1.0

正如我们所看到的,在节点之后,看起来预测总是 0 或 1。但是,如果我将这棵树应用于特征向量,我会得到类似 [0.1007, 0.8993] 的概率。 ,并且它们非常有意义,因为在训练集中,最终出现在与示例向量相同的叶子中的负/正比例与输出概率匹配。

我的问题:这些概率存储在哪里?有没有办法提取它们?如果是这样,如何?一个 pyspark解决方案会更好。

最佳答案

I'm trying to refactor a trained spark tree-based model (RandomForest or GBT classifiers) in such a way it can be exported in environments without spark. The



鉴于为 Spark(和其他)模型的实时服务而设计的工具越来越多,这可能是在重新发明轮子。

但是,如果您想从纯 Python 访问模型内​​部结构,最好加载其序列化形式。

假设你有:

from pyspark.ml.classification import RandomForestClassificationModel

rf_model: RandomForestClassificationModel
path: str # Absolute path

然后保存模型:
rf_model.write().save(path)

您可以使用支持结构和列表类型混合的 Parquet 阅读器将其加载回来。模型编写器写入两个节点数据:

node_data = spark.read.parquet("{}/data".format(path))

node_data.printSchema()

root
|-- treeID: integer (nullable = true)
|-- nodeData: struct (nullable = true)
| |-- id: integer (nullable = true)
| |-- prediction: double (nullable = true)
| |-- impurity: double (nullable = true)
| |-- impurityStats: array (nullable = true)
| | |-- element: double (containsNull = true)
| |-- rawCount: long (nullable = true)
| |-- gain: double (nullable = true)
| |-- leftChild: integer (nullable = true)
| |-- rightChild: integer (nullable = true)
| |-- split: struct (nullable = true)
| | |-- featureIndex: integer (nullable = true)
| | |-- leftCategoriesOrThreshold: array (nullable = true)
| | | |-- element: double (containsNull = true)
| | |-- numCategories: integer (nullable = true)

和树元数据:

tree_meta = spark.read.parquet("{}/treesMetadata".format(path))

tree_meta.printSchema()                            
root
|-- treeID: integer (nullable = true)
|-- metadata: string (nullable = true)
|-- weights: double (nullable = true)

前者提供了您需要的所有信息,因为预测过程基本上是 an aggregation of impurtityStats *.

您还可以使用底层 Java 对象直接访问此数据

from  collections import namedtuple
import numpy as np

LeafNode = namedtuple("LeafNode", ("prediction", "impurity"))
InternalNode = namedtuple(
"InternalNode", ("left", "right", "prediction", "impurity", "split"))
CategoricalSplit = namedtuple("CategoricalSplit", ("feature_index", "categories"))
ContinuousSplit = namedtuple("ContinuousSplit", ("feature_index", "threshold"))

def jtree_to_python(jtree):
def jsplit_to_python(jsplit):
if jsplit.getClass().toString().endswith(".ContinuousSplit"):
return ContinuousSplit(jsplit.featureIndex(), jsplit.threshold())
else:
jcat = jsplit.toOld().categories()
return CategoricalSplit(
jsplit.featureIndex(),
[jcat.apply(i) for i in range(jcat.length())])

def jnode_to_python(jnode):
prediction = jnode.prediction()
stats = np.array(list(jnode.impurityStats().stats()))

if jnode.numDescendants() != 0: # InternalNode
left = jnode_to_python(jnode.leftChild())
right = jnode_to_python(jnode.rightChild())
split = jsplit_to_python(jnode.split())

return InternalNode(left, right, prediction, stats, split)

else:
return LeafNode(prediction, stats)

return jnode_to_python(jtree.rootNode())

可应用于 RandomForestModel像这样:
nodes = [jtree_to_python(t) for t in rf_model._java_obj.trees()]

此外,这种结构可以很容易地用于对两个单独的树进行预测(警告:Python 3.7+ 领先。有关遗留用法,请参阅 functools 文档):

from functools import singledispatch

@singledispatch
def should_go_left(split, vector): pass

@should_go_left.register
def _(split: CategoricalSplit, vector):
return vector[split.feature_index] in split.categories

@should_go_left.register
def _(split: ContinuousSplit, vector):
return vector[split.feature_index] <= split.threshold

@singledispatch
def predict(node, vector): pass

@predict.register
def _(node: LeafNode, vector):
return node.prediction, node.impurity

@predict.register
def _(node: InternalNode, vector):
return predict(
node.left if should_go_left(node.split, vector) else node.right,
vector
)

和森林:

from typing import Iterable, Union

def predict_probability(nodes: Iterable[Union[InternalNode, LeafNode]], vector):
total = np.array([
v / v.sum() for _, v in (
predict(node, vector) for node in nodes
)
]).sum(axis=0)
return total / total.sum()

然而,这取决于内部 API(以及 Scala 包范围访问修饰符的弱点),并且将来可能会中断。

* DataFramedata 加载path 可以很容易地转换为与 predict 兼容的结构和 predict_probability上面定义的函数。

from pyspark.sql.dataframe import DataFrame 
from itertools import groupby
from operator import itemgetter


def model_data_to_tree(tree_data: DataFrame):
def dict_to_tree(node_id, nodes):
node = nodes[node_id]
prediction = node.prediction
impurity = np.array(node.impurityStats)

if node.leftChild == -1 and node.rightChild == -1:
return LeafNode(prediction, impurity)
else:
left = dict_to_tree(node.leftChild, nodes)
right = dict_to_tree(node.rightChild, nodes)
feature_index = node.split.featureIndex
left_value = node.split.leftCategoriesOrThreshold

split = (
CategoricalSplit(feature_index, left_value)
if node.split.numCategories != -1
else ContinuousSplit(feature_index, left_value[0])
)

return InternalNode(left, right, prediction, impurity, split)

tree_id = itemgetter("treeID")
rows = tree_data.collect()
return ([
dict_to_tree(0, {node.nodeData.id: node.nodeData for node in nodes})
for tree, nodes in groupby(sorted(rows, key=tree_id), key=tree_id)
] if "treeID" in tree_data.columns
else [dict_to_tree(0, {node.id: node for node in rows})])

关于apache-spark - 在 spark 中获取树模型的叶子概率,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58819534/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com