gpt4 book ai didi

apache-spark - 为什么 Spark 流很慢?

转载 作者:行者123 更新时间:2023-12-04 05:23:46 24 4
gpt4 key购买 nike

我使用了来自 github 存储库的 Spark 流示例程序,并尝试使用 kafka 和自定义接收器。在这两种情况下,我都在 20-30 秒后获得输出。在自定义接收器代码中,我立即获取数据,但输出需要 20-30 秒。我在单个节点上运行此代码。

我做错了什么还是有优化,我需要执行还是因为我在单节点上运行。

如果有人能指导我这将是一个很大的帮助。

我使用了 spark 存储库中的代码,这是代码:

import scala.Tuple2;
import com.google.common.collect.Lists;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.StorageLevels;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

import java.util.regex.Pattern;

/**
* Counts words in UTF8 encoded, '\n' delimited text received from the network every second.
* Usage: JavaNetworkWordCount <hostname> <port>
* <hostname> and <port> describe the TCP server that Spark Streaming would connect to receive data.
*
* To run this on your local machine, you need to first run a Netcat server
* `$ nc -lk 9999`
* and then run the example
* `$ bin/run-example org.apache.spark.examples.streaming.JavaNetworkWordCount localhost 9999`
*/
public final class JavaNetworkWordCount {
private static final Pattern SPACE = Pattern.compile(" ");

public static void main(String[] args) {
if (args.length < 2) {
System.err.println("Usage: JavaNetworkWordCount <hostname> <port>");
System.exit(1);
}

StreamingExamples.setStreamingLogLevels();

// Create the context with a 1 second batch size
SparkConf sparkConf = new SparkConf().setAppName("JavaNetworkWordCount");
JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, new Duration(1000));

// Create a JavaReceiverInputDStream on target ip:port and count the
// words in input stream of \n delimited text (eg. generated by 'nc')
// Note that no duplication in storage level only for running locally.
// Replication necessary in distributed scenario for fault tolerance.
JavaReceiverInputDStream<String> lines = ssc.socketTextStream(
args[0], Integer.parseInt(args[1]), StorageLevels.MEMORY_AND_DISK_SER);
JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
@Override
public Iterable<String> call(String x) {
return Lists.newArrayList(SPACE.split(x));
}
});
JavaPairDStream<String, Integer> wordCounts = words.mapToPair(
new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
}).reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
});

wordCounts.print();
ssc.start();
ssc.awaitTermination();
}
}

最佳答案

我在任何地方都看不到主配置。当你说你在一个节点上运行时,我猜你的意思是“本地”模式而不是一个独立的单节点。
如果是这种情况,默认情况下本地使用单个线程,该线程将由接收到的线程使用并使执行程序饿死。

尝试更改 new SparkConf().setAppName("JavaNetworkWordCount");到
new SparkConf().setAppName("JavaNetworkWordCount").setMaster("local[4]");

关于apache-spark - 为什么 Spark 流很慢?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/26549826/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com