- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
SparkStreaming
上下文以 30 秒的间隔从 RabbitMQ
读取流。我想修改 cassandra 中存在的相应行的几列的值,然后想将数据存储回 Cassandra
。为此,我需要检查特定主键的行是否存在于 Cassandra 中,如果是,则获取它并执行必要的操作。但问题是,我在驱动程序上创建了 StreamingContext
并在 Worker 上执行了操作。因此,他们无法获得 StreamingContext
对象,原因是它未序列化并发送给工作人员,我收到此错误:java.io.NotSerializableException:org.apache.spark.streaming.StreamingContext
。我也知道我们无法访问 foreachRDD 中的 StreamingContext
。但是,如何在不出现序列化错误的情况下实现相同的功能?
我看过几个例子here但它没有帮助。
这是代码片段:
val ssc = new StreamingContext(sparkConf,30)
val receiverStream = RabbitMQUtils.createStream(ssc, rabbitParams)
receiverStream.start()
val lines = receiverStream.map(EventData.fromString(_))
lines.foreachRDD{ x => if (x.toLocalIterator.nonEmpty) {
x.foreachPartition { it => for (tuple <- it) {
val cookieid = tuple.cookieid
val sessionid = tuple.sessionid
val logdate = tuple.logdate
val EventRows = ssc.cassandraTable("SparkTest", CassandraTable).select("*")
.where("cookieid = '" + cookieid + "' and logdate = '" + logdate+ "' and sessionid = '" + sessionid + "')
Somelogic Whether row exist or not for Cookieid
} } }
最佳答案
SparkContext 无法序列化并传递给可能位于不同节点中的多个工作程序。如果你需要做这样的事情,你可以使用 forEachPartiion, mapPartitons。否则使用您传递的函数执行此操作
CassandraConnector(SparkWriter.conf).withSessionDo { session =>
....
session.executeAsync(<CQL Statement>)
在 SparkConf 中,您需要提供 Cassandra 的详细信息
val conf = new SparkConf()
.setAppName("test")
.set("spark.ui.enabled", "true")
.set("spark.executor.memory", "8g")
// .set("spark.executor.core", "4")
.set("spark.eventLog.enabled", "true")
.set("spark.eventLog.dir", "/ephemeral/spark-events")
//to avoid disk space issues - default is /tmp
.set("spark.local.dir", "/ephemeral/spark-scratch")
.set("spark.cleaner.ttl", "10000")
.set("spark.cassandra.connection.host", cassandraip)
.setMaster("spark://10.255.49.238:7077")
Java CSCParser 是一个不可序列化的库。因此,如果您在 RDD 上调用 map 或 forEach,Spark 无法向它发送可能不同的节点。一种解决方法是使用 mapPartion,在这种情况下,将在一个 SparkNode 中执行一个完整的分区。因此它不需要为每个调用序列化。示例
val rdd_inital_parse = rdd.mapPartitions(pLines).
def pLines(lines: Iterator[String]) = {
val parser = new CSVParser() ---> Cannot be serialized, will fail if using rdd.map(pLines)
lines.map(x => parseCSVLine(x, parser.parseLine))
}
关于apache-spark - 将数据从 Spark-Streaming 存储到 Cassandra 时出现问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39363586/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!