作者热门文章
- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在研究 Fortran 中的 Bi-Conjugate Gradient 算法,并按照 Saad, Y.“稀疏线性系统的迭代方法”(普通 BiCG 方法)中的算法对其进行完全编码。但是,它没有收敛到所需的迭代次数,也没有返回正确的结果。
该算法在 Wikipedia (http://en.wikipedia.org/wiki/Biconjugate_gradient_method#Unpreconditioned_version_of_the_algorithm) 上的“Unpreconditioned version”中给出
我对 Fortran 还是比较陌生,并且不明白为什么它的行为不像预期的那样,因为据我所知,它的编码完全符合指定的要求。如果有人看到任何非正统的代码或算法中的错误,我将非常感激!
为简单起见,我包含了一个测试矩阵:
!
!////////////////////////////////////////////////////////////////////////
!
! BiCG_main.f90
! Created: 19 February 2013 12:01
! By: Robin Fox
!
!////////////////////////////////////////////////////////////////////////
!
PROGRAM bicg_main
!
IMPLICIT NONE
!-------------------------------------------------------------------
! Program to implement the Bi-Conjugate Gradient method
! follows algorithm in Saad
!-------------------------------------------------------------------
!
COMPLEX(KIND(0.0d0)), DIMENSION(:,:), ALLOCATABLE ::A
COMPLEX(KIND(0.0d0)), DIMENSION(:), ALLOCATABLE ::b
COMPLEX(KIND(0.0d0)), DIMENSION(:), ALLOCATABLE ::x0, x0s
COMPLEX(KIND(0.0d0)), DIMENSION(:), ALLOCATABLE ::x, xs
COMPLEX(KIND(0.0d0)), DIMENSION(:), ALLOCATABLE ::p, ps
COMPLEX(KIND(0.0d0)) ::alpha, rho0, rho1, r_rs
COMPLEX(KIND(0.0d0)), DIMENSION(:), ALLOCATABLE ::r,rs, res_vec
COMPLEX(KIND(0.0d0)), DIMENSION(:), ALLOCATABLE ::Ax, ATx
COMPLEX(KIND(0.0d0)), DIMENSION(:), ALLOCATABLE ::Ap, Aps
COMPLEX(KIND(0.0d0)) ::beta
!
REAL(KIND(0.0d0)) ::tol,res, n2b, n2r0, rel_res
!
INTEGER ::n,i,j,k, maxit
!////////////////////////////////////////////////////////////////////////
!----------------------------------------------------------
n=2
ALLOCATE(A(n,n))
ALLOCATE(b(n))
A(1,1)=CMPLX(-0.73492,7.11486)
A(1,2)=CMPLX(0.024839,4.12154)
A(2,1)=CMPLX(0.274492957,3.7885537)
A(2,2)=CMPLX(-0.632557864,1.95397735)
b(1)=CMPLX(0.289619736,0.895562183)
b(2)=CMPLX(-0.28475616,-0.892163111)
!----------------------------------------------------------
ALLOCATE(x0(n))
ALLOCATE(x0s(n))
!Use all zeros initial guess
x0(:)=CMPLX(0.0d0,0.0d0)
DO i=1,n
x0s(i)=CONJG(x0(i))
END DO
ALLOCATE(Ax(n))
ALLOCATE(ATx(n))
ALLOCATE(x(n))
ALLOCATE(xs(n))
! Multiply matrix A with vector x0
DO i=1,n
Ax(i)=CMPLX(0.0,0.0)
DO j=1,n
Ax(i)=Ax(i)+A(i,j)*x0(j) !==Ax=A*x0
END DO
END DO
! Multiply matrix A^T with vector x0
DO i=1,n
ATx(i)=CMPLX(0.0,0.0)
DO j=1,n
ATx(i)=ATx(i)+CONJG(A(j,i))*x0s(j) !==A^Tx=A^T*x0
END DO
END DO
res=0.0d0
n2b=0.0d0
x=x0
ALLOCATE(r(n))
ALLOCATE(rs(n))
ALLOCATE(p(n))
ALLOCATE(ps(n))
!Initialise
DO i=1,n
r(i)=b(i)-Ax(i)
rs(i)=CONJG(b(i))-ATx(i)
p(i)=r(i) !p0=r0
ps(i)=rs(i) !p0s=r0s
END DO
DO i=1,n
n2b=n2b+(b(i)*CONJG(b(i)))
res=res+(r(i)*CONJG(r(i))) !== inner prod(r,r)
END DO
n2b=SQRT(n2b)
res=SQRT(res)/n2b
!Check that inner prod(r,rs) =/= 0
n2r0=0.0d0
DO i=1,n
n2r0=n2r0+r(i)*CONJG(rs(i))
END DO
IF (n2r0==0) THEN
res=1d-20 !set tol so that loop doesn't run (i.e. already smaller than tol)
PRINT*, "Inner product of r, rs == 0"
END IF
WRITE(*,*) "n2r0=", n2r0
!----------------------------------------------------------
ALLOCATE(Ap(n))
ALLOCATE(Aps(n))
ALLOCATE(res_vec(n))
tol=1d-6
maxit=50 !for n=720
k=0
!Main loop:
main: DO WHILE ((res>tol).AND.(k<maxit))
k=k+1
! Multiply matrix A with vector p
DO i=1,n
Ap(i)=CMPLX(0.0,0.0)
DO j=1,n
Ap(i)=Ap(i)+A(i,j)*p(j)
END DO
END DO
! Multiply matrix A^T with vector p
! N.B. transpose is also conjg.
DO i=1,n
Aps(i)=CMPLX(0.0,0.0)
DO j=1,n
Aps(i)=Aps(i)+CONJG(A(j,i))*ps(j)
END DO
END DO
rho0=CMPLX(0.0d0,0.0d0)
DO i=1,n
rho0=rho0+(r(i)*CONJG(rs(i)))
END DO
WRITE(*,*) "rho0=", rho0
rho1=CMPLX(0.0d0,0.0d0)
DO i=1,n
rho1=rho1+(Ap(i)*CONJG(ps(i)))
END DO
WRITE(*,*) "rho1=", rho1
!Calculate alpha:
alpha=rho0/rho1
WRITE(*,*) "alpha=", alpha
!Update solution
DO i=1,n
x(i)=x(i)+alpha*p(i)
END DO
!Update residual:
DO i=1,n
r(i)=r(i)-alpha*Ap(i)
END DO
!Update second residual:
DO i=1,n
rs(i)=rs(i)-alpha*Aps(i)
END DO
!Calculate beta:
r_rs=CMPLX(0.0d0,0.0d0)
DO i=1,n
r_rs=r_rs+(r(i)*CONJG(rs(i)))
END DO
beta=r_rs/rho0
!Update direction vectors:
DO i=1,n
p(i)=r(i)+beta*p(i)
END DO
DO i=1,n
ps(i)=rs(i)+beta*ps(i)
END DO
!Calculate residual for convergence check
! res=0.0d0
! DO i=1,n
! res=res+(r(i)*CONJG(r(i))) !== inner prod(r,r)
! END DO
!----------------------------------------------------------
!Calculate updated residual "res_vec=b-A*x" relative to current x
DO i=1,n
Ax(i)=CMPLX(0.0d0, 0.0d0)
DO j=1,n
Ax(i)=Ax(i)+A(i,j)*x(j)
END DO
END DO
DO i=1,n
res_vec(i)=b(i)-Ax(i)
END DO
DO i=1,n
rel_res=rel_res+(res_vec(i)*CONJG(res_vec(i)))
END DO
res=SQRT(res)/REAL(n2b)
WRITE(*,*) "res=",res
WRITE(*,*) " "
END DO main
!----------------------------------------------------------
!Output message
IF (k<maxit) THEN
WRITE(*,*) "Converged in",k,"iterations"
ELSE
WRITE(*,*) "STOPPED after",k, "iterations because max no. of iterations was reached"
END IF
!Output solution vector:
WRITE(*,*) "x_sol="
DO i=1,n
WRITE(*,*) x(i)
END DO
!----------------------------------------------------------
DEALLOCATE(x0,x0s, Ax, ATx, x, xs, p, ps ,r, rs, Ap, Aps, res_vec)
DEALLOCATE(A,b)
!
END PROGRAM
!
!////////////////////////////////////////////////////////////////////////
STOPPED after 50 iterations because max no. of iterations was reached
x_sol=
(-2.88435711452590705E-002,-0.43229898544084933 )
( 0.11755325208241280 , 0.73895038053993978 )
-0.3700 - 0.6702i
0.7295 + 1.1571i
最佳答案
这是您的程序中的一些瑕疵。它们是否是错误有点主观,是否修改代码完全取决于您。
IF (n2r0==0) THEN
floating-point
源于广泛的matmul
的调用。例行程序(我想,我没有像我确定的那样仔细检查你的代码)。这实际上可能会减慢您的代码,但这不是现阶段的问题。调用经过良好测试的库例程而不是自己滚动将(a)减少您必须维护/测试/修复的代码量,并且(b)更有可能交付一次正确的解决方案。一旦你的代码工作了,如果你必须担心性能。 A(1,1)=CMPLX(-0.73492,7.11486)
A(1,1)=CMPLX(-0.73492_dp,7.11486_dp)
-0.73492
的精度数和 7.11486
.当然,你必须之前写过类似 dp = kind(0d0)
的东西。 , 还有其他方法可以强制文字常量的精度,但这是我通常这样做的方式。如果你有一个现代的 Fortran 编译器,它提供了内在的 iso_fortran_env
您可以替换 _dp
的模块使用现在的标准 _real64
. x0(:)=CMPLX(0.0d0,0.0d0)
DO i=1,n
x0s(i)=CONJG(x0(i))
END DO
x0 = CMPLX(0.0d0,0.0d0)
x0s = x0
CONJG
反复当CONJG(0,0)==(0,0)
. DO i=1,n
n2b=n2b+(b(i)*CONJG(b(i)))
res=res+(r(i)*CONJG(r(i))) !== inner prod(r,r)
END DO
n2b=SQRT(n2b)
res=SQRT(res)/n2b
n2b = sqrt(dot_product(b,b))
res = sqrt(dot_product(r,r))/n2b
matmul
一样。多于。 关于fortran90 - Fortran 中的 BiCG 算法无法正常工作?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/15065908/
我正在研究 Fortran 中的 Bi-Conjugate Gradient 算法,并按照 Saad, Y.“稀疏线性系统的迭代方法”(普通 BiCG 方法)中的算法对其进行完全编码。但是,它没有收敛
我是一名优秀的程序员,十分优秀!