- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我在csv文件C:\SampleData.csv
中有一个不规则的时间序列(带有DateTime和RainfallValue):
DateTime,RainInches
1/6/2000 11:59,0
1/6/2000 23:59,0.01
1/7/2000 11:59,0
1/13/2000 23:59,0
1/14/2000 0:00,0
1/14/2000 23:59,0
4/14/2000 3:07,0.01
4/14/2000 3:12,0.03
4/14/2000 3:19,0.01
12/31/2001 22:44,0
12/31/2001 22:59,0.07
12/31/2001 23:14,0
12/31/2001 23:29,0
12/31/2001 23:44,0.01
12/31/2001 23:59,0.01
2000-01-01 00:15:00 0.00
2000-01-01 00:30:00 0.00
2000-01-01 00:45:00 0.00
...
2001-12-31 23:30:00 0.01
2001-12-31 23:45:00 0.01
library(zoo)
library(xts)
filename = "C:\\SampleData.csv"
ReadData <- read.zoo(filename, format = "%m/%d/%Y %H:%M", sep=",", tz="UTC", header=TRUE) # read .csv as a ZOO object
RawData <- aggregate(ReadData, index(ReadData), sum) # Merge duplicate time stamps and SUM the corresponding data (CAUTION)
RawDataSeries <- as.xts(RawData,order.by =index(RawData)) #convert to an XTS object
RegularTimes <- seq(as.POSIXct("2000-01-01 00:00:00", tz = "UTC"), as.POSIXct("2001-12-31 23:45:00", tz = "UTC"), by = 60*15)
BlankTimeSeries <- xts((rep(0,length(RegularTimes))),order.by = RegularTimes)
MergedTimeSeries <- merge(RawDataSeries,BlankTimeSeries)
TS_sum15min <- period.apply(MergedTimeSeries,endpoints(MergedTimeSeries, "minutes", 15), sum, na.rm = TRUE )
TS_align15min <- align.time( TS_sum15min [endpoints(TS_sum15min , "minutes", 15)], n=60*15)
TS_align15min
:
1999-12-31 19:15:00 0
1999-12-31 19:30:00 0
1999-12-31 19:45:00 0
1999-12-31 20:00:00 0
1999-12-31 20:15:00 0
1999-12-31 20:30:00 0
最佳答案
xts扩展了zoo,zoo在其插图和文档中提供了广泛的示例。
这是一个可行的示例。我想我过去做得比较优雅,但这就是我现在要想的:
R> twohours <- ISOdatetime(2012,05,02,9,0,0) + seq(0:7)*15*60
R> twohours
[1] "2012-05-02 09:15:00 GMT" "2012-05-02 09:30:00 GMT"
[3] "2012-05-02 09:45:00 GMT" "2012-05-02 10:00:00 GMT"
[5] "2012-05-02 10:15:00 GMT" "2012-05-02 10:30:00 GMT"
[7] "2012-05-02 10:45:00 GMT" "2012-05-02 11:00:00 GMT"
R> set.seed(42)
R> observation <- xts(1:10, order.by=twohours[1]+cumsum(runif(10)*60*10))
R> observation
[,1]
2012-05-02 09:24:08.883625 1
2012-05-02 09:33:31.128874 2
2012-05-02 09:36:22.812594 3
2012-05-02 09:44:41.081170 4
2012-05-02 09:51:06.128481 5
2012-05-02 09:56:17.586051 6
2012-05-02 10:03:39.539040 7
2012-05-02 10:05:00.338998 8
2012-05-02 10:11:34.534372 9
2012-05-02 10:18:37.573243 10
R> to.minutes15(observation)[,4]
observation.Close
2012-05-02 09:24:08.883625 1
2012-05-02 09:44:41.081170 4
2012-05-02 09:56:17.586051 6
2012-05-02 10:11:34.534372 9
2012-05-02 10:18:37.573243 10
R> twoh <- xts(rep(NA,8), order.by=twohours)
R> twoh
[,1]
2012-05-02 09:15:00 NA
2012-05-02 09:30:00 NA
2012-05-02 09:45:00 NA
2012-05-02 10:00:00 NA
2012-05-02 10:15:00 NA
2012-05-02 10:30:00 NA
2012-05-02 10:45:00 NA
2012-05-02 11:00:00 NA
R> merge(twoh, observation)
twoh observation
2012-05-02 09:15:00.000000 NA NA
2012-05-02 09:24:08.883625 NA 1
2012-05-02 09:30:00.000000 NA NA
2012-05-02 09:33:31.128874 NA 2
2012-05-02 09:36:22.812594 NA 3
2012-05-02 09:44:41.081170 NA 4
2012-05-02 09:45:00.000000 NA NA
2012-05-02 09:51:06.128481 NA 5
2012-05-02 09:56:17.586051 NA 6
2012-05-02 10:00:00.000000 NA NA
2012-05-02 10:03:39.539040 NA 7
2012-05-02 10:05:00.338998 NA 8
2012-05-02 10:11:34.534372 NA 9
2012-05-02 10:15:00.000000 NA NA
2012-05-02 10:18:37.573243 NA 10
2012-05-02 10:30:00.000000 NA NA
2012-05-02 10:45:00.000000 NA NA
2012-05-02 11:00:00.000000 NA NA
na.locf()
进行观察
R> na.locf(merge(twoh, observation)[,2])
observation
2012-05-02 09:15:00.000000 NA
2012-05-02 09:24:08.883625 1
2012-05-02 09:30:00.000000 1
2012-05-02 09:33:31.128874 2
2012-05-02 09:36:22.812594 3
2012-05-02 09:44:41.081170 4
2012-05-02 09:45:00.000000 4
2012-05-02 09:51:06.128481 5
2012-05-02 09:56:17.586051 6
2012-05-02 10:00:00.000000 6
2012-05-02 10:03:39.539040 7
2012-05-02 10:05:00.338998 8
2012-05-02 10:11:34.534372 9
2012-05-02 10:15:00.000000 9
2012-05-02 10:18:37.573243 10
2012-05-02 10:30:00.000000 10
2012-05-02 10:45:00.000000 10
2012-05-02 11:00:00.000000 10
twoh
上的内部联接:
R> merge(twoh, na.locf(merge(twoh, observation)[,2]), join="inner")[,2]
observation
2012-05-02 09:15:00 NA
2012-05-02 09:30:00 1
2012-05-02 09:45:00 4
2012-05-02 10:00:00 6
2012-05-02 10:15:00 9
2012-05-02 10:30:00 10
2012-05-02 10:45:00 10
2012-05-02 11:00:00 10
R>
关于r - 从不规则时间序列创建规则的15分钟时间序列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/10423551/
我正在从 Stata 迁移到 R(plm 包),以便进行面板模型计量经济学。在 Stata 中,面板模型(例如随机效应)通常报告组内、组间和整体 R 平方。 I have found plm 随机效应
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 6年前关闭。 Improve this qu
我想要求用户输入整数值列表。用户可以输入单个值或一组多个值,如 1 2 3(spcae 或逗号分隔)然后使用输入的数据进行进一步计算。 我正在使用下面的代码 EXP <- as.integer(rea
当 R 使用分类变量执行回归时,它实际上是虚拟编码。也就是说,省略了一个级别作为基础或引用,并且回归公式包括所有其他级别的虚拟变量。但是,R 选择了哪一个作为引用,以及我如何影响这个选择? 具有四个级
这个问题基本上是我之前问过的问题的延伸:How to only print (adjusted) R-squared of regression model? 我想建立一个线性回归模型来预测具有 15
我在一台安装了多个软件包的 Linux 计算机上安装了 R。现在我正在另一台 Linux 计算机上设置 R。从他们的存储库安装 R 很容易,但我将不得不使用 安装许多包 install.package
我正在阅读 Hadley 的高级 R 编程,当它讨论字符的内存大小时,它说: R has a global string pool. This means that each unique strin
我们可以将 Shiny 代码写在两个单独的文件中,"ui.R"和 "server.R" , 或者我们可以将两个模块写入一个文件 "app.R"并调用函数shinyApp() 这两种方法中的任何一种在性
我正在使用 R 通过 RGP 包进行遗传编程。环境创造了解决问题的功能。我想将这些函数保存在它们自己的 .R 源文件中。我这辈子都想不通怎么办。我尝试过的一种方法是: bf_str = print(b
假设我创建了一个函数“function.r”,在编辑该函数后我必须通过 source('function.r') 重新加载到我的全局环境中。无论如何,每次我进行编辑时,我是否可以避免将其重新加载到我的
例如,test.R 是一个单行文件: $ cat test.R # print('Hello, world!') 我们可以通过Rscript test.R 或R CMD BATCH test.R 来
我知道我可以使用 Rmd 来构建包插图,但想知道是否可以更具体地使用 R Notebooks 来制作包插图。如果是这样,我需要将 R Notebooks 编写为包小插图有什么不同吗?我正在使用最新版本
我正在考虑使用 R 包的共享库进行 R 的站点安装。 多台计算机将访问该库,以便每个人共享相同的设置。 问题是我注意到有时您无法更新包,因为另一个 R 实例正在锁定库。我不能要求每个人都关闭它的 R
我知道如何从命令行启动 R 并执行表达式(例如, R -e 'print("hello")' )或从文件中获取输入(例如, R -f filename.r )。但是,在这两种情况下,R 都会运行文件中
我正在尝试使我当前的项目可重现,因此我正在创建一个主文档(最终是一个 .rmd 文件),用于调用和执行其他几个文档。这样我自己和其他调查员只需要打开和运行一个文件。 当前设置分为三层:主文件、2 个读
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 5年前关闭。 Improve this qu
我的 R 包中有以下描述文件 Package: blah Title: What the Package Does (one line, title case) Version: 0.0.0.9000
有没有办法更有效地编写以下语句?accel 是一个数据框。 accel[[2]]<- accel[[2]]-weighted.mean(accel[[2]]) accel[[3]]<- accel[[
例如,在尝试安装 R 包时 curl作为 usethis 的依赖项: * installing *source* package ‘curl’ ... ** package ‘curl’ succes
我想将一些软件作为一个包共享,但我的一些脚本似乎并不能很自然地作为函数运行。例如,考虑以下代码块,其中“raw.df”是一个包含离散和连续类型变量的数据框。函数“count.unique”和“squa
我是一名优秀的程序员,十分优秀!