- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我已经在 AWS EC2 实例上安装了 Spark 2.4.3 和 Hadoop 3.2。我一直在本地模式下使用 spark(主要是 pyspark)并取得了巨大的成功。能够旋转一些小的东西,然后在我需要动力时调整它的大小,并且非常快速地完成所有操作,这真是太好了。当我真的需要扩展时,我可以切换到 EMR 并去吃午饭。除了一个问题之外,一切都很顺利:我无法让本地 Spark 可靠地写入 S3(我一直在使用本地 EBS 空间)。这显然与有关 S3 作为文件系统的限制的文档中概述的所有问题有关。但是,使用最新的 hadoop,我对文档的阅读应该能够让它工作。
请注意,我知道另一个帖子,它提出了一个相关问题;这里有一些指导,但没有我能看到的解决方案。 How to use new Hadoop parquet magic commiter to custom S3 server with Spark
根据我对此处文档的最佳理解,我有以下设置(在不同地方设置):https://hadoop.apache.org/docs/r3.2.1/hadoop-aws/tools/hadoop-aws/index.html
fs.s3.impl: org.apache.hadoop.fs.s3a.S3AFileSystem
fs.s3a.committer.name: directory
fs.s3a.committer.magic.enabled: false
fs.s3a.committer.threads: 8
fs.s3a.committer.staging.tmp.path: /cache/staging
fs.s3a.committer.staging.unique-filenames: true
fs.s3a.committer.staging.conflict-mode: fail
fs.s3a.committer.staging.abort.pending.uploads: true
mapreduce.outputcommitter.factory.scheme.s3a: org.apache.hadoop.fs.s3a.commit.S3ACommitterFactory
fs.s3a.connection.maximum: 200
fs.s3a.fast.upload: true
java.io.IOException: Failed to rename S3AFileStatus{path=s3://my-research-lab-recognise/spark-testing/v2/nz/raw/bank/_temporary/0/_temporary/attempt_20190910022011_0004_m_000118_248/part-00118-c8f8259f-a727-4e19-8ee2-d6962020c819-c000.snappy.parquet; isDirectory=false; length=185052; replication=1; blocksize=33554432; modification_time=1568082036000; access_time=0; owner=brett; group=brett; permission=rw-rw-rw-; isSymlink=false; hasAcl=false; isEncrypted=false; isErasureCoded=false} isEmptyDirectory=FALSE to s3://my-research-lab-recognise/spark-testing/v2/nz/raw/bank/part-00118-c8f8259f-a727-4e19-8ee2-d6962020c819-c000.snappy.parquet
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.mergePaths(FileOutputCommitter.java:473)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.mergePaths(FileOutputCommitter.java:486)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.commitTask(FileOutputCommitter.java:597)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.commitTask(FileOutputCommitter.java:560)
at org.apache.spark.mapred.SparkHadoopMapRedUtil$.performCommit$1(SparkHadoopMapRedUtil.scala:50)
at org.apache.spark.mapred.SparkHadoopMapRedUtil$.commitTask(SparkHadoopMapRedUtil.scala:77)
at org.apache.spark.internal.io.HadoopMapReduceCommitProtocol.commitTask(HadoopMapReduceCommitProtocol.scala:225)
at org.apache.spark.sql.execution.datasources.FileFormatDataWriter.commit(FileFormatDataWriter.scala:78)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:247)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:242)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1394)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:248)
... 10 more
最佳答案
我帮助@brettc 进行了配置,我们找到了要设置的正确配置。
在 $SPARK_HOME/conf/spark-defaults.conf 下
# Enable S3 file system to be recognise
spark.hadoop.fs.s3a.impl org.apache.hadoop.fs.s3a.S3AFileSystem
# Parameters to use new commiters
spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version 2
spark.hadoop.fs.s3a.committer.name directory
spark.hadoop.fs.s3a.committer.magic.enabled false
spark.hadoop.fs.s3a.commiter.staging.conflict-mode replace
spark.hadoop.fs.s3a.committer.staging.unique-filenames true
spark.hadoop.fs.s3a.committer.staging.abort.pending.uploads true
spark.hadoop.mapreduce.outputcommitter.factory.scheme.s3a org.apache.hadoop.fs.s3a.commit.S3ACommitterFactory
spark.sql.sources.commitProtocolClass org.apache.spark.internal.io.cloud.PathOutputCommitProtocol
spark.sql.parquet.output.committer.class org.apache.spark.internal.io.cloud.BindingParquetOutputCommitter
{
"name" : "org.apache.hadoop.fs.s3a.commit.files.SuccessData/1",
"timestamp" : 1574729145842,
"date" : "Tue Nov 26 00:45:45 UTC 2019",
"hostname" : "<hostname>",
"committer" : "directory",
"description" : "Task committer attempt_20191125234709_0000_m_000000_0",
"metrics" : { [...] },
"diagnostics" : { [...] },
"filenames" : [...]
}
关于apache-spark - 如何让 AWS 上的本地 Spark 写入 S3,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58495909/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!