- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个由正数或nan组成的系列。但是当我计算乘积时,我得到 0。
示例输出:
In [14]: pricerelatives.mean()
Out[14]: 0.99110019490541013
In [15]: pricerelatives.prod()
Out[15]: 0.0
In [16]: len(pricerelatives)
Out[16]: 362698
In [17]: (pricerelatives>0).sum()
Out[17]: 223522
In [18]: (pricerelatives.isnull()).sum()
Out[18]: 139176
In [19]: 223522+139176
Out[19]: 362698
pricerelatives.prod()
?
In [32]: import operator
In [33]: from functools import reduce
In [34]: lst = list(pricerelatives.fillna(1))
In [35]: the_prod = reduce(operator.mul, lst)
In [36]: the_prod
Out[36]: 0.0
In [37]: pricerelatives[pricerelatives.notnull()].prod()
Out[37]: 0.0
In [39]: pricerelatives.describe()
Out[39]:
count 223522.000000
mean 0.991100
std 0.088478
min 0.116398
25% 1.000000
50% 1.000000
75% 1.000000
max 11.062591
dtype: float64
In [46]: pricerelatives[pricerelatives<1].describe()
Out[46]:
count 50160.000000
mean 0.922993
std 0.083865
min 0.116398
25% 0.894997
50% 0.951488
75% 0.982058
max 1.000000
dtype: float64
In [52]: 50160./223522
Out[52]: 0.2244074408783028
In [53]: pricerelatives[pricerelatives>=1].describe()
Out[53]:
count 173362.000000
mean 1.010806
std 0.079548
min 1.000000
25% 1.000000
50% 1.000000
75% 1.000000
max 11.062591
dtype: float64
In [54]: pricerelatives[pricerelatives<1].prod()
Out[54]: 0.0
最佳答案
这看起来像是 numpy
中的“错误” ;见 here .溢出时它不会升高。
以下是一些示例:
In [26]: prod(poisson(10, size=30))
Out[26]: -2043494819862020096
In [46]: prod(randn(10000))
Out[46]: 0.0
long
(Python 2) 或
int
(Python 3) 输入并使用
reduce
减少它/
functools.reduce
:
import operator
from functools import reduce
lst = list(pricerelatives.dropna())
the_prod = reduce(operator.mul, lst)
NaN
会更快s 然后计算乘积而不是先将它们设置为 1。
[0, 1)
中的值数量的比率值 >= 1 增长。
def nnz_ratio(ratio, size=1000):
n1 = ratio * size
n2 = size - n1
s1 = uniform(1, 2, size=n1)
s2 = uniform(0, 1, size=n2)
return Series(hstack((s1, s2)))
ratios = linspace(0.01, 1, 25)
ss = empty(len(ratios))
for i, ratio in enumerate(ratios):
ss[i] = nnz_ratio(ratio).prod()
ss
array([ 0.0000e+000, 0.0000e+000, 0.0000e+000, 0.0000e+000,
0.0000e+000, 3.6846e-296, 2.6969e-280, 1.2799e-233,
2.0497e-237, 4.9666e-209, 6.5059e-181, 9.8479e-171,
7.7879e-125, 8.2696e-109, 9.3416e-087, 4.1574e-064,
3.9266e-036, 4.1065e+004, 6.6814e+018, 7.1501e+040,
6.2192e+070, 1.3523e+093, 1.0739e+110, 1.5646e+144,
8.6361e+163])
from scipy.stats import gmean
gm = gmean(pricerelatives.dropna())
关于numpy - 为什么我的 Series.prod() 为 0?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18513071/
有时,我倾向于(重复)执行next next a 来获取特定元素。当您需要 2 次或更少的遍历时,这很有效。然而,它很快就会变得很麻烦。对于这个简单的情况,循环的开销太大。 幸运的是,如果您知道位置,
我在使用值为 numpy 数组的 pandas.Series 时遇到了以下奇怪的行为。 % s = pd.Series([5,2], index=[6,7]) %s.loc[6] 5 <-- ret
我有一个看起来像这样的数据框(小版本): A B C 0 125 ADB [AF:12] 1 189 ACB [AF:78, AF:85, AF:98] 2 148 ADB
我在 Pandas (s1) 中创建了一个系列,用于根据原始 DataFrame 中的列 ('d1') 计算这些固定数字 (1-14) 的实例数。我想要的显示在这里(时报); s1 Last
pandas series 有两个密切相关的属性:Series.index 和 Series.index.values。 这两个中的第一个返回某些 pandas 索引类型的当前索引。它是可变的,可用于
我正在尝试使用 KNNClassifier 训练模型。我将数据拆分如下: X_train, X_test, y_train, y_test = train_test_split(X_bow, y, t
我只是尝试对我的数据框进行排序并使用了以下函数: df[df.count >= df.count.quantile(.95)] 返回错误: AttributeError: 'function' obj
我试过了 print(type(numbers[2])) numbers[2].tolist() print(type(numbers[2])) 那是行不通的。我得到了 Numbers 是一个矩阵
我想从时间戳中减去日期。settings.dataset_end_date 是一个 pandas._libs.tslibs.timestamps.Timestamp引用['date_of_patent
我有一个带有数据的 pandas.core.series.Series 0 [00115840, 00110005, 001000033, 00116000... 1 [00267285,
s = pd.Series( nr.randint( 0, 10, 5 ), index=nr.randint(0, 10, 5 ) ) s 输出 1 3 7 6 2 0 9
pandas.DataFrame.query() 方法非常适合在加载或绘图时(预/后)过滤数据。它对于方法链特别方便。 我发现自己经常想将相同的逻辑应用于 pandas.Series,例如在完成诸如返
这个问题在这里已经有了答案: Difference between map, applymap and apply methods in Pandas (11 个回答) 去年关闭。 Series.ma
我正在总结一系列中的值,但根据我如何做,我会得到不同的结果。我试过的两种方法是: sum(df['series']) df['series'].sum() 为什么它们会返回不同的值? 示例代码。 s
我有一个字符串说 type(abc) >>str 我想把它转换成 pandas.core.series.Series。 我在 pandas 文档中看到有一段代码 pd.to_string() 将 pa
我有一个字符串说 type(abc) >>str 我想把它转换成 pandas.core.series.Series。 我在 pandas 文档中看到有一段代码 pd.to_string() 将 pa
这个问题在这里已经有了答案: Pandas: select DF rows based on another DF (5 个答案) 关闭 5 年前。 如果我有一个包含开始时间和结束时间的 DataF
我尝试了 Series.index 和 Series.keys() 并且输出是相似的。我找不到它们之间的显着差异。它们是否适用于某些特殊条件? 我在 Anaconda 上的 Jupyter Noteb
我有一个(非常大的)系列,其中包含关键字(例如,每行包含多个由“-”分隔的关键字 In[5]: word_series Out[5]: 0 the-cat-is-pink 1
我需要使用 pandas.read_excel 通过 Python 获取 Excel 电子表格最后一个单元格的值。该单元格包含一个日期,我需要将其分配给 Python 脚本中的变量。格式为2018-1
我是一名优秀的程序员,十分优秀!