- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我是分布式tensorflow的新手,正在寻找一个在CPU上进行同步训练的好例子。
我已经尝试过Distributed Tensorflow Example,它可以在1个参数服务器(1个具有1个CPU的机器)和3个工作器(每个工作= 1个具有1个CPU的机器)上成功地执行异步训练。但是,关于同步训练,尽管我遵循了以下内容的教程,但我仍无法正确运行它。
SyncReplicasOptimizer(V1.0 and V2.0)。
我已经将正式的SyncReplicasOptimizer代码插入正在工作的异步培训示例中,但是培训过程仍然是异步的。我的详细代码如下。与同步训练有关的任何代码都在******块内。
import tensorflow as tf
import sys
import time
# cluster specification ----------------------------------------------------------------------
parameter_servers = ["xx1.edu:2222"]
workers = ["xx2.edu:2222", "xx3.edu:2222", "xx4.edu:2222"]
cluster = tf.train.ClusterSpec({"ps":parameter_servers, "worker":workers})
# input flags
tf.app.flags.DEFINE_string("job_name", "", "Either 'ps' or 'worker'")
tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job")
FLAGS = tf.app.flags.FLAGS
# start a server for a specific task
server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index)
# Parameters ----------------------------------------------------------------------
N = 3 # number of replicas
learning_rate = 0.001
training_epochs = int(21/N)
batch_size = 100
# Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28)
n_hidden_1 = 256 # 1st layer number of features
n_hidden_2 = 256 # 2nd layer number of features
n_classes = 10 # MNIST total classes (0-9 digits)
if FLAGS.job_name == "ps":
server.join()
print("--- Parameter Server Ready ---")
elif FLAGS.job_name == "worker":
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# Between-graph replication
with tf.device(tf.train.replica_device_setter(
worker_device="/job:worker/task:%d" % FLAGS.task_index,
cluster=cluster)):
# count the number of updates
global_step = tf.get_variable('global_step', [],
initializer = tf.constant_initializer(0),
trainable = False,
dtype = tf.int32)
# tf Graph input
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
# Create model
def multilayer_perceptron(x, weights, biases):
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
# Hidden layer with RELU activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# Output layer with linear activation
out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
return out_layer
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
pred = multilayer_perceptron(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
# ************************* SyncReplicasOpt Version 1.0 *****************************************************
''' This optimizer collects gradients from all replicas, "summing" them,
then applying them to the variables in one shot, after which replicas can fetch the new variables and continue. '''
# Create any optimizer to update the variables, say a simple SGD
opt = tf.train.AdamOptimizer(learning_rate=learning_rate)
# Wrap the optimizer with sync_replicas_optimizer with N replicas: at each step the optimizer collects N gradients before applying to variables.
opt = tf.train.SyncReplicasOptimizer(opt, replicas_to_aggregate=N,
replica_id=FLAGS.task_index, total_num_replicas=N)
# Now you can call `minimize()` or `compute_gradients()` and `apply_gradients()` normally
train = opt.minimize(cost, global_step=global_step)
# You can now call get_init_tokens_op() and get_chief_queue_runner().
# Note that get_init_tokens_op() must be called before creating session
# because it modifies the graph.
init_token_op = opt.get_init_tokens_op()
chief_queue_runner = opt.get_chief_queue_runner()
# **************************************************************************************
# Test model
correct = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, "float"))
# Initializing the variables
init_op = tf.initialize_all_variables()
print("---Variables initialized---")
# **************************************************************************************
is_chief = (FLAGS.task_index == 0)
# Create a "supervisor", which oversees the training process.
sv = tf.train.Supervisor(is_chief=is_chief,
logdir="/tmp/train_logs",
init_op=init_op,
global_step=global_step,
save_model_secs=600)
# **************************************************************************************
with sv.prepare_or_wait_for_session(server.target) as sess:
# **************************************************************************************
# After the session is created by the Supervisor and before the main while loop:
if is_chief:
sv.start_queue_runners(sess, [chief_queue_runner])
# Insert initial tokens to the queue.
sess.run(init_token_op)
# **************************************************************************************
# Statistics
net_train_t = 0
# Training
for epoch in range(training_epochs):
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# ======== net training time ========
begin_t = time.time()
sess.run(train, feed_dict={x: batch_x, y: batch_y})
end_t = time.time()
net_train_t += (end_t - begin_t)
# ===================================
# Calculate training accuracy
# acc = sess.run(accuracy, feed_dict={x: mnist.train.images, y: mnist.train.labels})
# print("Epoch:", '%04d' % (epoch+1), " Train Accuracy =", acc)
print("Epoch:", '%04d' % (epoch+1))
print("Training Finished!")
print("Net Training Time: ", net_train_t, "second")
# Testing
print("Testing Accuracy = ", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
sv.stop()
print("done")
最佳答案
我认为您的问题可以作为 tensorflow 的#9596问题中的注释来回答。
此问题是由新版本的tf.train.SyncReplicasOptimizer()的错误引起的。您可以使用此API的旧版本来避免此问题。
另一个解决方案是来自Tensorflow Distributed Benchmarks。看一下源代码,您会发现它们通过 tensorflow 中的队列手动同步工作程序。通过实验,该基准测试的运行完全符合您的预期。
希望这些评论和资源可以帮助您解决问题。谢谢!
关于tensorflow - 分布式Tensorflow : good example for synchronous training on CPUs,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41293576/
在 java 中不使用“同步”关键字的情况下,是否有其他方法可以同步类或方法? 谢谢, 马利卡琼·科卡塔努尔 最佳答案 您可能想查看并发包中引入的对 JDK 5 的更改。 http://java.su
第 1 部分: 假设下面这段代码 void method1(){ synchronized (lockObject){ method2(); System.ou
我有一个 REST 服务器和一个在移动设备上运行的客户端应用程序。客户端有一些数据并希望从服务器获取数据更新。如何以 RESTful 方式在单个事务中执行此操作? 假设客户有以下元素: widge
我有一个多线程 Java 应用程序。在一种方法中,需要同步一个 ArrayList。由于 arrayList 不是线程安全的,所以我必须使用同步。问题是 ArrayList 类型的对象不是对象的成员变
我正在阅读 Android 示例中的 BluetoothChatService.java 文件,有一件事特别让我感到困惑。 方法在多个位置访问静态成员,并且定义为同步。 在另一部分中,正在访问同一个静
我知道为了实现线程安全和同步,我们使用同步块(synchronized block)或方法。 但我无法理解声明- “Java 中的同步块(synchronized block)在某些对象上同步 ” 任
在 Scala 中使用 JDBC 的示例中,有以下代码: this.synchronized { if (!driverLoaded) loadDriver() } 为什么this.synchro
abstract class A { protected abstract int isRunning(); public void concreteMethod() { synchr
有谁可以分享一下他们的经验吗?“我们什么时候在同步方法和同步块(synchronized block)之间进行调用”有任何性能问题吗? 最佳答案 When do we make a call to u
这是我之前问题的后续问题,Is this variable being safely accessed by using synchronization? 对于下面的程序, Class SubClas
我目前正在为 N 体问题实现多线程版本的 Barnes-Hut 算法。虽然该算法有效,但它不是很优化,我正在尝试减少我的程序的运行时间。 我已经确保有多个线程可以准确地找到我正在使用的空间的边界,并意
我有这门课: public class MyClass { public MyClass(){} public void actionA(){ synchronized
又是一个关于ArrayList和synchronize的问题。 我只想知道这段代码到底做了什么: ArrayList list = ....; synchronized (list) { if
我可以在另一个同步块(synchronized block)中包含同步块(synchronized block)以同步另一个对象吗? 例子: synchronized(myObjetc1){
public class ObjectCounter { private static long numOfInstances = 0; public ObjectCounter(){
我在某处读到,对于 various reasons 应该避免 synchronized(this) .然而,我遇到的一些值得尊敬的代码在构造函数中使用了以下内容: public SomeClass(C
Java 为同步代码的关键部分提供了一种非常方便的习惯用法: synchronized(someObject) { // do something really important all b
我有一个 WeakReference 的 Collections.synchronizedList,_components; 我写了类似下面的内容,希望编译者会提示: public boolean a
使用下面两个版本的Singleton Classes有什么区别 首先我使用的是synchronized(Singleton.class) 在第二个我使用同步(Obj)//第一种类型 公共(public
我正在查看 DatagramSocket 的源代码,我发现了这个: public void disconnect() { synchronized (this) { if (i
我是一名优秀的程序员,十分优秀!