gpt4 book ai didi

r - 使用R的收缩率计算模型平均数据的置信区间

转载 作者:行者123 更新时间:2023-12-04 04:35:31 25 4
gpt4 key购买 nike

我正在尝试使用基于Shaffer,2004年的对数暴露方法运行嵌套生存模型。我有一系列参数,希望比较所有可能的模型,然后像Burnham和Anderson一样使用收缩估计模型平均参数, 2002年。但是,我在弄清楚如何估算收缩调整参数的置信区间时遇到了麻烦。

是否可以为使用收缩估计的模型平均参数估计置信区间?我可以轻松地使用model.average $ coef.shrinkage提取具有收缩的模型平均参数的平均估计值,但不清楚如何获得相应的置信区间。

感谢您的任何帮助。我目前正在使用MuMIn软件包,因为有关链接功能的AICcmodavg出现错误。

以下是我使用的代码的简化版本:

library(MuMIn)

# Logistical Exposure Link Function
# See Shaffer, T. 2004. A unifying approach to analyzing nest success.
# Auk 121(2): 526-540.

logexp <- function(days = 1)
{
require(MASS)
linkfun <- function(mu) qlogis(mu^(1/days))
linkinv <- function(eta) plogis(eta)^days
mu.eta <- function(eta) days * plogis(eta)^(days-1) *
.Call("logit_mu_eta", eta, PACKAGE = "stats")
valideta <- function(eta) TRUE
link <- paste("logexp(", days, ")", sep="")
structure(list(linkfun = linkfun, linkinv = linkinv,
mu.eta = mu.eta, valideta = valideta, name = link),
class = "link-glm")
}

# randomly generate data
nest.data <- data.frame(egg=rep(1,100), chick=runif(100), exposure=trunc(rnorm(100,113,10)), density=rnorm(100,0,1), height=rnorm(100,0,1))
nest.data$chick[nest.data$chick<=0.5] <- 0
nest.data$chick[nest.data$chick!=0] <- 1

# run global logistic exposure model
glm.logexp <- glm(chick/egg ~ density * height, family=binomial(logexp(days=nest.data$exposure)), data=nest.data)

# evaluate all possible models
model.set <- dredge(glm.logexp)

# model average 95% confidence set and estimate parameters using shrinkage
mod.avg <- model.avg(model.set, beta=TRUE)
(mod.avg$coef.shrinkage)

关于如何提取/生成相应置信区间的任何想法?

谢谢
艾米

最佳答案

经过一会儿的思考之后,我根据Lukacs,P. M.,Burnham,K. P.,&Anderson,D. R.(2009)中的等式5提出了以下解决方案。模型选择偏见和Freedman的悖论。统计数学研究所年鉴,62(1),117-125。任何关于其有效性的评论将不胜感激。

上面的代码如下:

# MuMIn generated shrinkage estimate  
shrinkage.coef <- mod.avg$coef.shrinkage

# beta parameters for each variable/model combination
coef.array <- mod.avg$coefArray
coef.array <- replace(coef.array, is.na(coef.array), 0) # replace NAs with zeros

# generate empty dataframe for estimates
shrinkage.estimates <- data.frame(shrinkage.coef,variance=NA)

# calculate shrinkage-adjusted variance based on Lukacs et al, 2009
for(i in 1:dim(coef.array)[3]){
input <- data.frame(coef.array[,,i],weight=model.set$weight)

variance <- rep(NA,dim(input)[2])
for (j in 1:dim(input)[2]){
variance[j] <- input$weight[j] * (input$Std..Err[j]^2 + (input$Estimate[j] - shrinkage.estimates$shrinkage.coef[i])^2)
}
shrinkage.estimates$variance[i] <- sum(variance)
}

# calculate confidence intervals
shrinkage.estimates$lci <- shrinkage.estimates$shrinkage.coef - 1.96*shrinkage.estimates$variance
shrinkage.estimates$uci <- shrinkage.estimates$shrinkage.coef + 1.96*shrinkage.estimates$variance

关于r - 使用R的收缩率计算模型平均数据的置信区间,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13338816/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com