- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我可以使用 I/O 端口(asm:in, out
指令)在现代 x86_64 CPU 上通过 PCI Express 传输数据吗,或者我只能将 BAR 用于 MMIO(内存映射 I/O)和 DMA(直接内存访问到内存映射PCI-E 设备的区域)?
最佳答案
基于 PCI 的总线,包括 PCI Express,支持三种不同的地址空间:内存地址空间、I/O 地址空间和配置地址空间。在 x86 PC 上,包括那些使用 x86_64 CPU 的 PC,内存地址空间与 CPU 的物理地址空间 1:1(或多或少)映射。 I/O 地址空间与 CPU 的 I/O 地址空间 1:1 映射。配置地址空间映射到 BIOS 在引导时选择的物理地址空间中的固定位置。
这意味着 x86 IN/OUT 指令可以访问 PCI Express 设备,但前提是设备实际分配了部分 I/O 地址空间。一般来说,唯一能做到的设备是那些向后兼容 ISA 卡的设备。例如,PCI Express 串行卡将通过 I/O 空间提供与 8250 UART 兼容的接口(interface),以便它可以与标准串行端口驱动程序一起使用。如果它使用内存映射 I/O,则设备将需要自己的自定义驱动程序。
其他仍然使用 I/O 空间的 PCE Express 设备包括现代设备,如视频卡(用于 VGA 兼容性)和 SATA 接口(interface)(用于 IDE 兼容性)。任何不需要遗留支持的新事物都将专门使用内存映射 I/O。除了使用 I/O 地址空间的向后兼容性之外,没有其他优势。
我还应该指出,您对 BAR 的使用是不正确的。操作系统(或 BIOS/固件)使用 BAR(基地址寄存器)为设备分配内存区域和/或 I/O 空间。它们存在于配置地址空间中,不能用于传输数据。例如,PCI Express 串行卡将有一个 BAR,它确定其 8450 兼容寄存器映射到 I/O 空间的位置。操作系统会将它们映射到任何其他设备都不使用的位置。
虽然在 PC 上,操作系统会使用内存映射 I/O 来读取和写入 BAR,但驱动程序不会。为了传输数据,驱动程序将访问已通过 BAR 分配给设备的 PCI 内存区域或 I/O 空间。这些区域将包含直接用于传输数据的寄存器、用于设置 DMA 进行传输或映射到保存数据的设备上的 RAM 的寄存器。
(我还应该添加使用设备的部分 PCI 配置空间作为设备特定寄存器来执行传输、配置或其他任何操作的可能性。假设的非向后兼容 PCI Express 串行卡可能根本不会定义任何 BAR,而是映射它的 UART 在其配置空间中注册。)
关于assembly - 我可以使用 I/O 端口吗(asm : `in, out` ) to transfer data via PCI Express on modern x86_64 CPU?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19883260/
在使用 requests 库中的状态代码时,我遇到了一些奇怪的事情。每个 HTTP 状态代码都有一个常量,有些具有别名(例如,包括 200 的复选标记): url = 'https://httpbin
这是我得到的代码,但我不知道这两行是什么意思: o[arr[i]] = o[arr[i]] || {}; o = o[arr[i]]; 完整代码: var GLOBAL={}; GLOBAL.name
所以这个问题的答案What is the difference between Θ(n) and O(n)? 指出“基本上,当我们说算法是 O(n) 时,它也是 O(n2)、O(n1000000)、O
这是一个快速的想法;有人会说 O(∞) 实际上是 O(1) 吗? 我的意思是它不依赖于输入大小? 所以在某种程度上它是恒定的,尽管它是无限的。 或者是唯一“正确”的表达方式 O(∞)? 最佳答案 无穷
这是真的: log(A) + log(B) = log(A * B) [0] 这也是真的吗? O(log(A)) + O(log(B)) = O(log(A * B)) [1] 据我了解 O(f
我正在解决面试练习的问题,但我似乎无法找出以下问题的时间和空间复杂度的答案: Given two sorted Linked Lists, merge them into a third list i
我了解 Big-Oh 表示法。但是我该如何解释 O(O(f(n))) 是什么意思呢?是指增长率的增长率吗? 最佳答案 x = O(n)基本上意味着 x <= kn对于一些常量 k . 因此 x = O
我正在编写一个函数,该函数需要一个对象和一个投影来了解它必须在哪个字段上工作。 我想知道是否应该使用这样的字符串: const o = { a: 'Hello There' }; funct
直觉上,我认为这三个表达式是等价的。 例如,如果一个算法在 O(nlogn) + O(n) 或 O(nlogn + n) 中运行(我很困惑),我可以假设这是一个O(nlogn) 算法? 什么是真相?
根据 O'Reilly 的 Python in a Nutshell 中的 Alex Martelli,复杂度类 O(n) + O(n) = O(n)。所以我相信。但是我很困惑。他解释说:“N 的两个
O(n^2)有什么区别和 O(n.log(n)) ? 最佳答案 n^2 的复杂性增长得更快。 关于big-o - 大 O 符号 : differences between O(n^2) and O(n
每当我收到来自 MS outlook 的电子邮件时,我都会收到此标记 & nbsp ; (没有空格)哪个显示为?在 <>. 当我将其更改为 ISO-8859-1 时,浏览器页面字符集编码为 UTF-8
我很难理解 Algorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani - page 24 中的以下陈述它们将 O(n) 的总和表
我在面试蛋糕上练习了一些问题,并在问题 2给出的解决方案使用两个单独的 for 循环(非嵌套),解决方案提供者声称他/她在 O(n) 时间内解决了它。据我了解,这将是 O(2n) 时间。是我想错了吗,
关于 Java 语法的幼稚问题。什么 T accept(ObjectVisitorEx visitor); 是什么意思? C# 的等价物是什么? 最佳答案 在 C# 中它可能是: O Accept(
假设我有一个长度为 n 的数组,我使用时间为 nlogn 的排序算法对它进行了排序。得到这个排序后的数组后,我遍历它以找到任何具有线性时间的重复元素。我的理解是,由于操作是分开发生的,所以时间是 O(
总和 O(1)+O(2)+ .... +O(n) 的计算结果是什么? 我在某处看到它的解决方案: O(n(n+1) / 2) = O(n^2) 但我对此并不满意,因为 O(1) = O(2) = co
这个问题在这里已经有了答案: 11 年前关闭。 Possible Duplicate: Plain english explanation of Big O 我想这可能是类里面教的东西,但作为一个自学
假设我有两种算法: for (int i = 0; i 2)更长的时间给定的一些n - 其中n这种情况的发生实际上取决于所涉及的算法 - 对于您的具体示例, n 2)分别时间,您可能会看到: Θ(n)
这个问题在这里已经有了答案: Example of a factorial time algorithm O( n! ) (4 个回答) 6年前关闭。 我见过表示为 O(X!) 的 big-o 示例但
我是一名优秀的程序员,十分优秀!