- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 keras 微调 resnet 50。当我卡住 resnet50 中的所有图层时,一切正常。但是,我想卡住一些 resnet50 层,而不是全部。但是当我这样做时,我得到了一些错误。这是我的代码:
base_model = ResNet50(include_top=False, weights="imagenet", input_shape=(input_size, input_size, input_channels))
model = Sequential()
model.add(base_model)
model.add(Flatten())
model.add(Dense(80, activation="softmax"))
#this is where the error happens. The commented code works fine
"""
for layer in base_model.layers:
layer.trainable = False
"""
for layer in base_model.layers[:-26]:
layer.trainable = False
model.summary()
optimizer = Adam(lr=1e-4)
model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
callbacks = [
EarlyStopping(monitor='val_loss', patience=4, verbose=1, min_delta=1e-4),
ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=2, cooldown=2, verbose=1),
ModelCheckpoint(filepath='weights/renet50_best_weight.fold_' + str(fold_count) + '.hdf5', save_best_only=True,
save_weights_only=True)
]
model.load_weights(filepath="weights/renet50_best_weight.fold_1.hdf5")
model.fit_generator(generator=train_generator(), steps_per_epoch=len(df_train) // batch_size, epochs=epochs, verbose=1,
callbacks=callbacks, validation_data=valid_generator(), validation_steps = len(df_valid) // batch_size)
Traceback (most recent call last):
File "/home/jamesben/ai_challenger/src/train.py", line 184, in <module> model.load_weights(filepath="weights/renet50_best_weight.fold_" + str(fold_count) + '.hdf5')
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 719, in load_weights topology.load_weights_from_hdf5_group(f, layers)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py", line 3095, in load_weights_from_hdf5_group K.batch_set_value(weight_value_tuples)
File "/usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow_backend.py", line 2193, in batch_set_value get_session().run(assign_ops, feed_dict=feed_dict)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 767, in run run_metadata_ptr)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 944, in _run % (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (128,) for Tensor 'Placeholder_72:0', which has shape '(3, 3, 128, 128)'
最佳答案
使用 load_weights()
时和 save_weights()
对于嵌套模型,如果 trainable
很容易出错设置不一样。
要解决此错误,请确保在调用 model.load_weights()
之前卡住相同的图层。 .也就是说,如果权重文件在所有层都卡住的情况下保存,则过程将是:
base_model
中的所有层base_model.layers[-26:]
)base_model = ResNet50(include_top=False, input_shape=(224, 224, 3))
model = Sequential()
model.add(base_model)
model.add(Flatten())
model.add(Dense(80, activation="softmax"))
for layer in base_model.layers:
layer.trainable = False
model.load_weights('all_layers_freezed.h5')
for layer in base_model.layers[-26:]:
layer.trainable = True
model.load_weights()
,(粗略)每层的权重通过以下步骤加载(在
topology.py 中的函数
load_weights_from_hdf5_group()
中):
layer.weights
获得权重张量K.batch_set_value()
将权重值分配给权重张量 trainable
因为第 1 步。
model.summary()
给出:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
resnet50 (Model) (None, 1, 1, 2048) 23587712
_________________________________________________________________
flatten_10 (Flatten) (None, 2048) 0
_________________________________________________________________
dense_5 (Dense) (None, 80) 163920
=================================================================
Total params: 23,751,632
Trainable params: 11,202,640
Non-trainable params: 12,548,992
_________________________________________________________________
内
ResNet50
模型被视为
model
的一层在负重加载过程中。加载图层时
resnet50
,在步骤 1 中,调用
layer.weights
相当于调用
base_model.weights
.
ResNet50
中所有层的权重张量列表模型将被收集并返回。
Layer
的定义中类(class):
@property
def weights(self):
return self.trainable_weights + self.non_trainable_weights
如果
base_model
中的所有层被卡住,权重张量将按以下顺序排列:
for layer in base_model.layers:
layer.trainable = False
print(base_model.weights)
[<tf.Variable 'conv1/kernel:0' shape=(7, 7, 3, 64) dtype=float32_ref>,
<tf.Variable 'conv1/bias:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bn_conv1/gamma:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bn_conv1/beta:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bn_conv1/moving_mean:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bn_conv1/moving_variance:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'res2a_branch2a/kernel:0' shape=(1, 1, 64, 64) dtype=float32_ref>,
<tf.Variable 'res2a_branch2a/bias:0' shape=(64,) dtype=float32_ref>,
...
<tf.Variable 'res5c_branch2c/kernel:0' shape=(1, 1, 512, 2048) dtype=float32_ref>,
<tf.Variable 'res5c_branch2c/bias:0' shape=(2048,) dtype=float32_ref>,
<tf.Variable 'bn5c_branch2c/gamma:0' shape=(2048,) dtype=float32_ref>,
<tf.Variable 'bn5c_branch2c/beta:0' shape=(2048,) dtype=float32_ref>,
<tf.Variable 'bn5c_branch2c/moving_mean:0' shape=(2048,) dtype=float32_ref>,
<tf.Variable 'bn5c_branch2c/moving_variance:0' shape=(2048,) dtype=float32_ref>]
但是,如果某些层是可训练的,则可训练层的权重张量将位于卡住层的权重张量之前:
for layer in base_model.layers[-5:]:
layer.trainable = True
print(base_model.weights)
[<tf.Variable 'res5c_branch2c/kernel:0' shape=(1, 1, 512, 2048) dtype=float32_ref>,
<tf.Variable 'res5c_branch2c/bias:0' shape=(2048,) dtype=float32_ref>,
<tf.Variable 'bn5c_branch2c/gamma:0' shape=(2048,) dtype=float32_ref>,
<tf.Variable 'bn5c_branch2c/beta:0' shape=(2048,) dtype=float32_ref>,
<tf.Variable 'conv1/kernel:0' shape=(7, 7, 3, 64) dtype=float32_ref>,
<tf.Variable 'conv1/bias:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bn_conv1/gamma:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bn_conv1/beta:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bn_conv1/moving_mean:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bn_conv1/moving_variance:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'res2a_branch2a/kernel:0' shape=(1, 1, 64, 64) dtype=float32_ref>,
<tf.Variable 'res2a_branch2a/bias:0' shape=(64,) dtype=float32_ref>,
...
<tf.Variable 'bn5c_branch2b/moving_mean:0' shape=(512,) dtype=float32_ref>,
<tf.Variable 'bn5c_branch2b/moving_variance:0' shape=(512,) dtype=float32_ref>,
<tf.Variable 'bn5c_branch2c/moving_mean:0' shape=(2048,) dtype=float32_ref>,
<tf.Variable 'bn5c_branch2c/moving_variance:0' shape=(2048,) dtype=float32_ref>]
顺序的变化是为什么你得到一个关于张量形状的错误。 hdf5 文件中保存的权重值与上述第 2 步中的错误权重张量匹配。卡住所有图层时一切正常的原因是因为您的模型检查点也被保存,所有图层都被卡住,因此顺序是正确的。
base_model = ResNet50(include_top=False, weights="imagenet", input_shape=(input_size, input_size, input_channels))
x = Flatten()(base_model.output)
x = Dense(80, activation="softmax")(x)
model = Model(base_model.input, x)
for layer in base_model.layers:
layer.trainable = False
model.save_weights("all_nontrainable.h5")
base_model = ResNet50(include_top=False, weights="imagenet", input_shape=(input_size, input_size, input_channels))
x = Flatten()(base_model.output)
x = Dense(80, activation="softmax")(x)
model = Model(base_model.input, x)
for layer in base_model.layers[:-26]:
layer.trainable = False
model.load_weights("all_nontrainable.h5")
关于neural-network - 微调resnet50时如何卡住一些图层,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46610732/
SQLite、Content provider 和 Shared Preference 之间的所有已知区别。 但我想知道什么时候需要根据情况使用 SQLite 或 Content Provider 或
警告:我正在使用一个我无法完全控制的后端,所以我正在努力解决 Backbone 中的一些注意事项,这些注意事项可能在其他地方更好地解决......不幸的是,我别无选择,只能在这里处理它们! 所以,我的
我一整天都在挣扎。我的预输入搜索表达式与远程 json 数据完美配合。但是当我尝试使用相同的 json 数据作为预取数据时,建议为空。点击第一个标志后,我收到预定义消息“无法找到任何内容...”,结果
我正在制作一个模拟 NHL 选秀彩票的程序,其中屏幕右侧应该有一个 JTextField,并且在左侧绘制弹跳的选秀球。我创建了一个名为 Ball 的类,它实现了 Runnable,并在我的主 Draf
这个问题已经有答案了: How can I calculate a time span in Java and format the output? (18 个回答) 已关闭 9 年前。 这是我的代码
我有一个 ASP.NET Web API 应用程序在我的本地 IIS 实例上运行。 Web 应用程序配置有 CORS。我调用的 Web API 方法类似于: [POST("/API/{foo}/{ba
我将用户输入的时间和日期作为: DatePicker dp = (DatePicker) findViewById(R.id.datePicker); TimePicker tp = (TimePic
放宽“邻居”的标准是否足够,或者是否有其他标准行动可以采取? 最佳答案 如果所有相邻解决方案都是 Tabu,则听起来您的 Tabu 列表的大小太长或您的释放策略太严格。一个好的 Tabu 列表长度是
我正在阅读来自 cppreference 的代码示例: #include #include #include #include template void print_queue(T& q)
我快疯了,我试图理解工具提示的行为,但没有成功。 1. 第一个问题是当我尝试通过插件(按钮 1)在点击事件中使用它时 -> 如果您转到 Fiddle,您会在“内容”内看到该函数' 每次点击都会调用该属
我在功能组件中有以下代码: const [ folder, setFolder ] = useState([]); const folderData = useContext(FolderContex
我在使用预签名网址和 AFNetworking 3.0 从 S3 获取图像时遇到问题。我可以使用 NSMutableURLRequest 和 NSURLSession 获取图像,但是当我使用 AFHT
我正在使用 Oracle ojdbc 12 和 Java 8 处理 Oracle UCP 管理器的问题。当 UCP 池启动失败时,我希望关闭它创建的连接。 当池初始化期间遇到 ORA-02391:超过
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 9 年前。 Improve
引用这个plunker: https://plnkr.co/edit/GWsbdDWVvBYNMqyxzlLY?p=preview 我在 styles.css 文件和 src/app.ts 文件中指定
为什么我的条形这么细?我尝试将宽度设置为 1,它们变得非常厚。我不知道还能尝试什么。默认厚度为 0.8,这是应该的样子吗? import matplotlib.pyplot as plt import
当我编写时,查询按预期执行: SELECT id, day2.count - day1.count AS diff FROM day1 NATURAL JOIN day2; 但我真正想要的是右连接。当
我有以下时间数据: 0 08/01/16 13:07:46,335437 1 18/02/16 08:40:40,565575 2 14/01/16 22:2
一些背景知识 -我的 NodeJS 服务器在端口 3001 上运行,我的 React 应用程序在端口 3000 上运行。我在 React 应用程序 package.json 中设置了一个代理来代理对端
我面临着一个愚蠢的问题。我试图在我的 Angular 应用程序中延迟加载我的图像,我已经尝试过这个2: 但是他们都设置了 src attr 而不是 data-src,我在这里遗漏了什么吗?保留 d
我是一名优秀的程序员,十分优秀!