gpt4 book ai didi

neural-network - 微调resnet50时如何卡住一些图层

转载 作者:行者123 更新时间:2023-12-04 04:31:56 25 4
gpt4 key购买 nike

我正在尝试使用 keras 微调 resnet 50。当我卡住 resnet50 中的所有图层时,一切正常。但是,我想卡住一些 resnet50 层,而不是全部。但是当我这样做时,我得到了一些错误。这是我的代码:

base_model = ResNet50(include_top=False, weights="imagenet", input_shape=(input_size, input_size, input_channels))
model = Sequential()
model.add(base_model)
model.add(Flatten())
model.add(Dense(80, activation="softmax"))

#this is where the error happens. The commented code works fine
"""
for layer in base_model.layers:
layer.trainable = False
"""
for layer in base_model.layers[:-26]:
layer.trainable = False
model.summary()
optimizer = Adam(lr=1e-4)
model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])

callbacks = [
EarlyStopping(monitor='val_loss', patience=4, verbose=1, min_delta=1e-4),
ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=2, cooldown=2, verbose=1),
ModelCheckpoint(filepath='weights/renet50_best_weight.fold_' + str(fold_count) + '.hdf5', save_best_only=True,
save_weights_only=True)
]

model.load_weights(filepath="weights/renet50_best_weight.fold_1.hdf5")
model.fit_generator(generator=train_generator(), steps_per_epoch=len(df_train) // batch_size, epochs=epochs, verbose=1,
callbacks=callbacks, validation_data=valid_generator(), validation_steps = len(df_valid) // batch_size)

错误如下:
Traceback (most recent call last):
File "/home/jamesben/ai_challenger/src/train.py", line 184, in <module> model.load_weights(filepath="weights/renet50_best_weight.fold_" + str(fold_count) + '.hdf5')
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 719, in load_weights topology.load_weights_from_hdf5_group(f, layers)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py", line 3095, in load_weights_from_hdf5_group K.batch_set_value(weight_value_tuples)
File "/usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow_backend.py", line 2193, in batch_set_value get_session().run(assign_ops, feed_dict=feed_dict)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 767, in run run_metadata_ptr)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 944, in _run % (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (128,) for Tensor 'Placeholder_72:0', which has shape '(3, 3, 128, 128)'

谁能给我一些关于我应该用 resnet50 卡住多少层的帮助?

最佳答案

使用 load_weights() 时和 save_weights()对于嵌套模型,如果 trainable 很容易出错设置不一样。
要解决此错误,请确保在调用 model.load_weights() 之前卡住相同的图层。 .也就是说,如果权重文件在所有层都卡住的情况下保存,则过程将是:

  • 重新创建模型
  • 卡住base_model中的所有层
  • 加载砝码
  • 解冻您要训练的那些层(在本例中为 base_model.layers[-26:] )

  • 例如,
    base_model = ResNet50(include_top=False, input_shape=(224, 224, 3))
    model = Sequential()
    model.add(base_model)
    model.add(Flatten())
    model.add(Dense(80, activation="softmax"))

    for layer in base_model.layers:
    layer.trainable = False
    model.load_weights('all_layers_freezed.h5')

    for layer in base_model.layers[-26:]:
    layer.trainable = True

    根本原因:
    当您调用 model.load_weights() ,(粗略)每层的权重通过以下步骤加载(在 topology.py 中的函数 load_weights_from_hdf5_group() 中):
  • 调用 layer.weights获得权重张量
  • 将每个权重张量与hdf5文件
  • 中对应的权重值匹配
  • 调用 K.batch_set_value()将权重值分配给权重张量

  • 如果您的模型是嵌套模型,则必须小心 trainable因为第 1 步。
    我将用一个例子来解释它。对于与上述相同的型号, model.summary()给出:
    _________________________________________________________________
    Layer (type) Output Shape Param #
    =================================================================
    resnet50 (Model) (None, 1, 1, 2048) 23587712
    _________________________________________________________________
    flatten_10 (Flatten) (None, 2048) 0
    _________________________________________________________________
    dense_5 (Dense) (None, 80) 163920
    =================================================================
    Total params: 23,751,632
    Trainable params: 11,202,640
    Non-trainable params: 12,548,992
    _________________________________________________________________
    ResNet50模型被视为 model 的一层在负重加载过程中。加载图层时 resnet50 ,在步骤 1 中,调用 layer.weights相当于调用 base_model.weights . ResNet50 中所有层的权重张量列表模型将被收集并返回。
    现在的问题是,在构建权重张量列表时, 可训练权重将出现在不可训练权重之前 .在 Layer 的定义中类(class):
    @property
    def weights(self):
    return self.trainable_weights + self.non_trainable_weights
    如果 base_model 中的所有层被卡住,权重张量将按以下顺序排列:
    for layer in base_model.layers:
    layer.trainable = False
    print(base_model.weights)

    [<tf.Variable 'conv1/kernel:0' shape=(7, 7, 3, 64) dtype=float32_ref>,
    <tf.Variable 'conv1/bias:0' shape=(64,) dtype=float32_ref>,
    <tf.Variable 'bn_conv1/gamma:0' shape=(64,) dtype=float32_ref>,
    <tf.Variable 'bn_conv1/beta:0' shape=(64,) dtype=float32_ref>,
    <tf.Variable 'bn_conv1/moving_mean:0' shape=(64,) dtype=float32_ref>,
    <tf.Variable 'bn_conv1/moving_variance:0' shape=(64,) dtype=float32_ref>,
    <tf.Variable 'res2a_branch2a/kernel:0' shape=(1, 1, 64, 64) dtype=float32_ref>,
    <tf.Variable 'res2a_branch2a/bias:0' shape=(64,) dtype=float32_ref>,
    ...
    <tf.Variable 'res5c_branch2c/kernel:0' shape=(1, 1, 512, 2048) dtype=float32_ref>,
    <tf.Variable 'res5c_branch2c/bias:0' shape=(2048,) dtype=float32_ref>,
    <tf.Variable 'bn5c_branch2c/gamma:0' shape=(2048,) dtype=float32_ref>,
    <tf.Variable 'bn5c_branch2c/beta:0' shape=(2048,) dtype=float32_ref>,
    <tf.Variable 'bn5c_branch2c/moving_mean:0' shape=(2048,) dtype=float32_ref>,
    <tf.Variable 'bn5c_branch2c/moving_variance:0' shape=(2048,) dtype=float32_ref>]
    但是,如果某些层是可训练的,则可训练层的权重张量将位于卡住层的权重张量之前:
    for layer in base_model.layers[-5:]:
    layer.trainable = True
    print(base_model.weights)

    [<tf.Variable 'res5c_branch2c/kernel:0' shape=(1, 1, 512, 2048) dtype=float32_ref>,
    <tf.Variable 'res5c_branch2c/bias:0' shape=(2048,) dtype=float32_ref>,
    <tf.Variable 'bn5c_branch2c/gamma:0' shape=(2048,) dtype=float32_ref>,
    <tf.Variable 'bn5c_branch2c/beta:0' shape=(2048,) dtype=float32_ref>,
    <tf.Variable 'conv1/kernel:0' shape=(7, 7, 3, 64) dtype=float32_ref>,
    <tf.Variable 'conv1/bias:0' shape=(64,) dtype=float32_ref>,
    <tf.Variable 'bn_conv1/gamma:0' shape=(64,) dtype=float32_ref>,
    <tf.Variable 'bn_conv1/beta:0' shape=(64,) dtype=float32_ref>,
    <tf.Variable 'bn_conv1/moving_mean:0' shape=(64,) dtype=float32_ref>,
    <tf.Variable 'bn_conv1/moving_variance:0' shape=(64,) dtype=float32_ref>,
    <tf.Variable 'res2a_branch2a/kernel:0' shape=(1, 1, 64, 64) dtype=float32_ref>,
    <tf.Variable 'res2a_branch2a/bias:0' shape=(64,) dtype=float32_ref>,
    ...
    <tf.Variable 'bn5c_branch2b/moving_mean:0' shape=(512,) dtype=float32_ref>,
    <tf.Variable 'bn5c_branch2b/moving_variance:0' shape=(512,) dtype=float32_ref>,
    <tf.Variable 'bn5c_branch2c/moving_mean:0' shape=(2048,) dtype=float32_ref>,
    <tf.Variable 'bn5c_branch2c/moving_variance:0' shape=(2048,) dtype=float32_ref>]
    顺序的变化是为什么你得到一个关于张量形状的错误。 hdf5 文件中保存的权重值与上述第 2 步中的错误权重张量匹配。卡住所有图层时一切正常的原因是因为您的模型检查点也被保存,所有图层都被卡住,因此顺序是正确的。

    可能更好的解决方案:
    您可以使用函数式 API 来避免嵌套模型。例如,以下代码应该可以正常工作:
    base_model = ResNet50(include_top=False, weights="imagenet", input_shape=(input_size, input_size, input_channels))
    x = Flatten()(base_model.output)
    x = Dense(80, activation="softmax")(x)
    model = Model(base_model.input, x)

    for layer in base_model.layers:
    layer.trainable = False
    model.save_weights("all_nontrainable.h5")

    base_model = ResNet50(include_top=False, weights="imagenet", input_shape=(input_size, input_size, input_channels))
    x = Flatten()(base_model.output)
    x = Dense(80, activation="softmax")(x)
    model = Model(base_model.input, x)

    for layer in base_model.layers[:-26]:
    layer.trainable = False
    model.load_weights("all_nontrainable.h5")

    关于neural-network - 微调resnet50时如何卡住一些图层,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46610732/

    25 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com