- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
使用下面的数据框,我想优化总返回,同时满足某些界限。
d = {'Win':[0,0,1, 0, 0, 1, 0],'Men':[0,1,0, 1, 1, 0, 0], 'Women':[1,0,1, 0, 0, 1,1],'Matches' :[0,5,4, 7, 4, 10,13],
'Odds':[1.58,3.8,1.95, 1.95, 1.62, 1.8, 2.1], 'investment':[0,0,6, 10, 5, 25,0],}
data = pd.DataFrame(d)
我想最大化以下等式:
totalreturn = np.sum(data['Odds'] * data['investment'] * (data['Win'] == 1))
函数应该最大化满足以下边界:
for i in range(len(data)):
investment = data['investment'][i]
C = alpha0 + alpha1*data['Men'] + alpha2 * data['Women'] + alpha3 * data['Matches']
if (lb < investment ) & (investment < ub) & (investment > C) == False:
data['investment'][i] = 0
特此
lb
和
ub
数据帧中的每一行都是常量。阈值
C
但是,每一行都不同。因此有6个参数需要优化:
lb, ub, alph0, alpha1, alpha2, alpha3
.
lb
和
ub
正在尝试优化。
import pandas as pd
from scipy.optimize import minimize
def objective(val, data):
# Approach 1
# Lowerbound and upperbound
lb, ub = val
# investments
# These matches/bets are selected to put wager on
tf1 = (data['investment'] > lb) & (data['investment'] < ub)
data.loc[~tf1, 'investment'] = 0
# Total investment
totalinvestment = sum(data['investment'])
# Good placed bets
data['reward'] = data['Odds'] * data['investment'] * (data['Win'] == 1)
totalreward = sum(data['reward'])
# Return and cumalative return
data['return'] = data['reward'] - data['investment']
totalreturn = sum(data['return'])
data['Cum return'] = data['return'].cumsum()
# Return on investment
print('\n',)
print('lb, ub:', lb, ub)
print('TotalReturn: ',totalreturn)
print('TotalInvestment: ', totalinvestment)
print('TotalReward: ', totalreward)
print('# of bets', (data['investment'] != 0).sum())
return totalreturn
# Bounds and contraints
b = (0,100)
bnds = (b,b,)
x0 = [0,100]
sol = minimize(objective, x0, args = (data,), method = 'Nelder-Mead', bounds = bnds)
和方法2:
import pandas as pd
import time
import pickle
from hyperopt import fmin, tpe, Trials
from hyperopt import STATUS_OK
from hyperopt import hp
def objective(args):
# Approach2
# Lowerbound and upperbound
lb, ub = args
# investments
# These matches/bets are selected to put wager on
tf1 = (data['investment'] > lb) & (data['investment'] < ub)
data.loc[~tf1, 'investment'] = 0
# Total investment
totalinvestment = sum(data['investment'])
# Good placed bets
data['reward'] = data['Odds'] * data['investment'] * (data['Win'] == 1)
totalreward = sum(data['reward'])
# Return and cumalative return
data['return'] = data['reward'] - data['investment']
totalreturn = sum(data['return'])
data['Cum return'] = data['return'].cumsum()
# store results
d = {'loss': - totalreturn, 'status': STATUS_OK, 'eval time': time.time(),
'other stuff': {'type': None, 'value': [0, 1, 2]},
'attachments': {'time_module': pickle.dumps(time.time)}}
return d
trials = Trials()
parameter_space = [hp.uniform('lb', 0, 100), hp.uniform('ub', 0, 100)]
best = fmin(objective,
space= parameter_space,
algo=tpe.suggest,
max_evals=500,
trials = trials)
print('\n', trials.best_trial)
有谁知道我应该如何进行? Scipy 不会生成所需的结果。 Hyperopt 优化确实会产生所需的结果。在任何一种方法中,我都不知道如何合并依赖于行的边界(
C(i)
)。
最佳答案
我在这里假设您无法遍历整个数据集,或者它不完整,或者您想要外推,因此您无法计算所有组合。
如果您没有先验,并且不确定平滑度,或者评估可能很昂贵,我会使用贝叶斯优化。您可以控制探索/开发并防止陷入最低限度。
我会用 scikit-optimize它更好地实现了贝叶斯优化 IMO。他们有更好的初始化技术,如 Sobol'
此处正确实现的方法。这确保您的搜索空间将被正确采样。
from skopt import gp_minimize
res = gp_minimize(objective, bnds, initial_point_generator='sobol')
关于python - Scipy 或 bayesian 优化函数与 Python 中的约束、边界和数据框,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/66985605/
C语言sscanf()函数:从字符串中读取指定格式的数据 头文件: ?
最近,我有一个关于工作预评估的问题,即使查询了每个功能的工作原理,我也不知道如何解决。这是一个伪代码。 下面是一个名为foo()的函数,该函数将被传递一个值并返回一个值。如果将以下值传递给foo函数,
CStr 函数 返回表达式,该表达式已被转换为 String 子类型的 Variant。 CStr(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CSng 函数 返回表达式,该表达式已被转换为 Single 子类型的 Variant。 CSng(expression) expression 参数是任意有效的表达式。 说明 通常,可
CreateObject 函数 创建并返回对 Automation 对象的引用。 CreateObject(servername.typename [, location]) 参数 serv
Cos 函数 返回某个角的余弦值。 Cos(number) number 参数可以是任何将某个角表示为弧度的有效数值表达式。 说明 Cos 函数取某个角并返回直角三角形两边的比值。此比值是
CLng 函数 返回表达式,此表达式已被转换为 Long 子类型的 Variant。 CLng(expression) expression 参数是任意有效的表达式。 说明 通常,您可以使
CInt 函数 返回表达式,此表达式已被转换为 Integer 子类型的 Variant。 CInt(expression) expression 参数是任意有效的表达式。 说明 通常,可
Chr 函数 返回与指定的 ANSI 字符代码相对应的字符。 Chr(charcode) charcode 参数是可以标识字符的数字。 说明 从 0 到 31 的数字表示标准的不可打印的
CDbl 函数 返回表达式,此表达式已被转换为 Double 子类型的 Variant。 CDbl(expression) expression 参数是任意有效的表达式。 说明 通常,您可
CDate 函数 返回表达式,此表达式已被转换为 Date 子类型的 Variant。 CDate(date) date 参数是任意有效的日期表达式。 说明 IsDate 函数用于判断 d
CCur 函数 返回表达式,此表达式已被转换为 Currency 子类型的 Variant。 CCur(expression) expression 参数是任意有效的表达式。 说明 通常,
CByte 函数 返回表达式,此表达式已被转换为 Byte 子类型的 Variant。 CByte(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CBool 函数 返回表达式,此表达式已转换为 Boolean 子类型的 Variant。 CBool(expression) expression 是任意有效的表达式。 说明 如果 ex
Atn 函数 返回数值的反正切值。 Atn(number) number 参数可以是任意有效的数值表达式。 说明 Atn 函数计算直角三角形两个边的比值 (number) 并返回对应角的弧
Asc 函数 返回与字符串的第一个字母对应的 ANSI 字符代码。 Asc(string) string 参数是任意有效的字符串表达式。如果 string 参数未包含字符,则将发生运行时错误。
Array 函数 返回包含数组的 Variant。 Array(arglist) arglist 参数是赋给包含在 Variant 中的数组元素的值的列表(用逗号分隔)。如果没有指定此参数,则
Abs 函数 返回数字的绝对值。 Abs(number) number 参数可以是任意有效的数值表达式。如果 number 包含 Null,则返回 Null;如果是未初始化变量,则返回 0。
FormatPercent 函数 返回表达式,此表达式已被格式化为尾随有 % 符号的百分比(乘以 100 )。 FormatPercent(expression[,NumDigitsAfterD
FormatNumber 函数 返回表达式,此表达式已被格式化为数值。 FormatNumber( expression [,NumDigitsAfterDecimal [,Inc
我是一名优秀的程序员,十分优秀!