- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有 2 个关于格式化数据以用于上下文强盗模型训练的问题。
如果我有如下数据...
1:1:0.2 | d1:us d2:female d3:12
1:1:0.2 | us female 12
最佳答案
是的,你是对的。
输入特征格式为:空格分隔,每个特征为<name>:<value>
哪里:<value>
,如果存在,必须是数字。
要表示分类值,您可以使用除 :
以外的其他值。作为 <name>
之间的分隔符和 <value>
.在这种情况下,整个字符串将被视为特征名称。这通常称为“one-hot encoding”(每个可能的特征+值组合都被视为一个单独的特征)。
另请注意功能名称 12
将被 vw
散列直接到哈希表中的插槽 12(模 2^ 位),假设这是用户想要的,因为数字特征很常见(并且是 libSVM 约定)。这可以通过选项 --hash all
禁用。在命令行上。默认为 --hash strings
含义:(murmur3) 散列特征名称,它们看起来像一个字符串(不是整数),但别管(不要散列)看起来像数字的特征名称。
另见:How to represent categorical features in vowpal-wabbit其中包括用于表示 vw
中的输入特征的备忘单.
关于vowpalwabbit - Vowpal Wabbit Contextual Bandit 数据格式,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41686315/
我正在尝试使用 VW 使用上下文强盗框架执行排名,特别是使用 --cb_explore_adf --softmax --lambda X .选择 softmax 是因为,根据 VW 的文档:“这是一个
我目前正在探索 PU learning .这只是从正面和未标记的数据中学习。出版物之一[Zhang, 2009]断言可以通过修改具有概率输出(例如逻辑回归)的二元分类器算法的损失函数来学习。论文指出应
我试图确定随着输入集大小的增长,VowpalWabbit 的“状态”是如何维持的。在典型的机器学习环境中,如果我有 1000 个输入向量,我希望立即发送所有这些向量,等待模型构建阶段完成,然后使用该模
给定经过训练的上下文老虎机模型,如何检索测试样本的预测向量? 例如,假设我有一个名为“train.dat”的火车集,其中包含格式如下的行 1:-1:0.3 | a b c # 2:2:0.3 |
我是 vawpal wabbit 的新手,所以有一些关于它的问题。 我将数据集传递给 vw 并拟合模型并获得样本内预测,使用 -f 保存模型。到现在为止还挺好。我知道如何使用模型并对不同的数据集进行预
我有以下所有分类变量的数据: class education income social_standing 1 basic low g
最近我在使用 Vowpal Wabbit 进行分类,我得到了一个关于 readable_model 的问题。 这是我的命令:vw --quiet --save_resume --compressed
我想使用空模型对 vowpal wabbit 进行线性回归(仅截取 - 用于比较原因)。我应该为此使用哪个优化器?还是简单平均的最佳常量损失报告? 最佳答案 A1:对于线性回归,如果您关心平均值,您应
我一直在努力理解 vowpal wabbit 算法。有没有人可以帮助我了解 VW 以及如何实现它 最佳答案 Vowpal Wabbit专注于在线学习(虽然它也可以批处理 L-BFGS),它的主要算法是
我正在查看以下 2 个关于 VW 在使用 --adaptive 标志时所做的更新的演示。 似乎它们是不同的。 http://www.slideshare.net/jakehofman/technica
我发现在训练过程中,我的模型 vw 在日志中显示了非常大的特征数(比我的特征数多得多)。 我尝试使用一些小例子来重现它: 简单测试: -1 | 1 2 3 1 | 3 4 5 然后“vw simpl
我有几个关于大众汽车简单运行的输出的问题。我已经阅读了互联网和维基网站,但仍然不确定一些基本的事情。 我对波士顿住房数据进行了以下操作: vw -d housing.vm --progress 1 其
在这种情况下,输入之一是选择 ARM / Action 的概率,但我们如何找到该概率? 找到这个概率本身不是一项艰巨的任务吗? 最佳答案 提供概率意味着您正在假设您正在提供历史上采取的行动,例如从日志
我正在尝试使用隐藏的散列来保存vowpal wabbit模型。我有一个有效的模型,它包含以下内容: vw --oaa 2 -b 24 -d mydata.vw --readable_model mym
我的目标是在参数空间中对各种 VW 模型进行网格搜索(尝试不同的损失函数和正则化等)。由于模型可以使用多次传递,我想使用交叉验证。我想知道我是否应该实现我自己的交叉验证代码(也许作为一个 bash 脚
我正在使用 VW 7.4 进行一些二进制分类: cat train | vw -k --binary --cache_file cache -f model --compressed --passes
关闭。这个问题需要更多focused .它目前不接受答案。 想改善这个问题吗?更新问题,使其仅关注一个问题 editing this post . 3年前关闭。 Improve this questi
我有一个数据集(有 6 个目标类)的多类分类问题。训练数据的类标签分布偏斜:下面是每个类标签(1 到 6)的分布 (array([174171, 12, 29, 8285, 9
抱歉,我确实觉得我忽略了一些非常明显的事情。 但是怎么会发生以下情况: $ cat myTrainFile.txt 1:1 |f 1:12 2:13 2:1 |f 3:23 4:234 3:1 |f
对不起,我确实觉得我忽略了一些非常明显的事情。 但是怎么会发生下面的事情: $ cat myTrainFile.txt 1:1 |f 1:12 2:13 2:1 |f 3:23 4:234 3:1 |
我是一名优秀的程序员,十分优秀!