- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我在尝试使用 CuDNNLSTM 而不是 keras.layers.LSTM 时遇到了问题。
这是我得到的错误:
Failed to call ThenRnnForward with model config: [rnn_mode,rnn_input_mode, rnn_direction_mode]: 2, 0, 0 , [num_layers,input_size, num_units, dir_count, seq_length, batch_size]: [1, 300,512, 1, 5521, 128] [[{{node bidirectional_1/CudnnRNN_1}} =CudnnRNN[T=DT_FLOAT, _class=["loc:@train...NNBackprop"],direction="unidirectional", dropout=0, input_mode="linear_input",is_training=true, rnn_mode="lstm", seed=87654321, seed2=0,_device="/job:localhost/replica:0/task:0/device:GPU:0"](bidirectional_1/transpose_1,bidirectional_1/ExpandDims_1, bidirectional_1/ExpandDims_1,bidirectional_1/concat_1)]] [[{{node loss/mul/_75}} =_Recvclient_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0",send_device="/job:localhost/replica:0/task:0/device:GPU:0",send_device_incarnation=1, tensor_name="edge_1209_loss/mul",tensor_type=DT_FLOAT,_device="/job:localhost/replica:0/task:0/device:CPU:0"]]
InternalError: GPU sync failed
MAX_LEN = max(len(article) for article in X_train_tokens)
EMBEDDING_DIM=300
vocab_size = len(word_to_id)
classes = 2
# Text input
text_input = Input(shape=(MAX_LEN,))
embedding = Embedding(vocab_size, EMBEDDING_DIM, input_length=MAX_LEN)(text_input)
x = Bidirectional(LSTM(512, return_sequences=False))(embedding)
pred = Dense(2, activation='softmax')(x)
model = Model(inputs=[text_input],outputs=pred)
model.compile(loss='categorical_crossentropy', optimizer='RMSprop', metrics=['accuracy'])
batch_size = 128
generator = text_training_generator(batch_size)
steps = len(X_train)/ batch_size
model.fit_generator(generator, steps_per_epoch=steps, verbose=True, epochs=10)
模型总结:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 5521) 0
_________________________________________________________________
embedding_1 (Embedding) (None, 5521, 300) 8099100
_________________________________________________________________
bidirectional_1 (Bidirection (None, 1024) 3330048
_________________________________________________________________
dense_1 (Dense) (None, 2) 2050
=================================================================
Total params: 11,431,198
Trainable params: 11,431,198
Non-trainable params: 0
_________________________________________________________________
最佳答案
可能您的 GPU 内存不足。您的网络非常大,有 1100 万个可训练参数。你真的需要循环层的 512*2 输出吗?
此外,您的 embedding_dim 也很大,而您的词汇量却很小,只有 5k 个单词。我猜您的网络对于您的问题来说太复杂了。我建议首先尝试使用 32 的嵌入大小和 32 的 LSTM 大小。如果您的准确性仍然很差,您可以增加复杂性。
EMBEDDING_DIM = 32
Bidirectional(LSTM(32, return_sequences=False))(embedding)
关于tensorflow - CuDNNLSTM : Failed to call ThenRnnForward,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53972814/
我在尝试使用 CuDNNLSTM 而不是 keras.layers.LSTM 时遇到了问题。 这是我得到的错误: Failed to call ThenRnnForward with model co
我是一名优秀的程序员,十分优秀!