gpt4 book ai didi

python-3.x - 由于 libcublas 问题,Tensorflow 将无法导入

转载 作者:行者123 更新时间:2023-12-04 04:23:59 25 4
gpt4 key购买 nike

我正在为深度学习建立一个本地开发环境。我按照 Fast.ai 论坛上此主题的第一篇文章中的说明进行操作:

http://forums.fast.ai/t/py3-and-tensorflow-setup/1460

运行pip install git+git://github.com/fchollet/keras.git似乎已成功安装 Keras,但有一些警告。

Successfully built Keras
distributed 1.221.8 require msgpack, which is not installed.
tensorboard 1.8.0 has requirement bleach==1.50, but you'll have to bleach 2.1.3 which is incompatible
Tensorboard 1.8.0 has requirement html5lib--0.9999999, but youll have html5lib 1.0.1 which is incompatible.

Successfully installed Keras-2.1.6

当我尝试从 iPython 导入 tensorflow 时,我得到以下堆栈跟踪:
In [1]: import tensorflow
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow.py in <module>()
57
---> 58 from tensorflow.python.pywrap_tensorflow_internal import *
59 from tensorflow.python.pywrap_tensorflow_internal import __version__

~/anaconda3/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow_internal.py in <module>()
27 return _mod
---> 28 _pywrap_tensorflow_internal = swig_import_helper()
29 del swig_import_helper

~/anaconda3/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow_internal.py in swig_import_helper()
23 try:
---> 24 _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
25 finally:

~/anaconda3/lib/python3.6/imp.py in load_module(name, file, filename, details)
242 else:
--> 243 return load_dynamic(name, filename, file)
244 elif type_ == PKG_DIRECTORY:

~/anaconda3/lib/python3.6/imp.py in load_dynamic(name, path, file)
342 name=name, loader=loader, origin=path)
--> 343 return _load(spec)
344

ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory

During handling of the above exception, another exception occurred:

ImportError Traceback (most recent call last)
<ipython-input-1-d6579f534729> in <module>()
----> 1 import tensorflow

~/anaconda3/lib/python3.6/site-packages/tensorflow/__init__.py in <module>()
22
23 # pylint: disable=g-bad-import-order
---> 24 from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import
25 # pylint: disable=wildcard-import
26 from tensorflow.tools.api.generator.api import * # pylint: disable=redefined-builtin

~/anaconda3/lib/python3.6/site-packages/tensorflow/python/__init__.py in <module>()
47 import numpy as np
48
---> 49 from tensorflow.python import pywrap_tensorflow
50
51 # Protocol buffers

~/anaconda3/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow.py in <module>()
72 for some common reasons and solutions. Include the entire stack trace
73 above this error message when asking for help.""" % traceback.format_exc()
---> 74 raise ImportError(msg)
75
76 # pylint: enable=wildcard-import,g-import-not-at-top,unused-import,line-too-long

ImportError: Traceback (most recent call last):
File "/home/usrname/anaconda3/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow.py", line 58, in <module>
from tensorflow.python.pywrap_tensorflow_internal import *
File "/home/usrname/anaconda3/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 28, in <module>
_pywrap_tensorflow_internal = swig_import_helper()
File "/home/usrname/anaconda3/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 24, in swig_import_helper
_mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
File "/home/usrname/anaconda3/lib/python3.6/imp.py", line 243, in load_module
return load_dynamic(name, filename, file)
File "/home/usrname/anaconda3/lib/python3.6/imp.py", line 343, in load_dynamic
return _load(spec)
ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory


Failed to load the native TensorFlow runtime.

我的系统正在运行带有 GTX 1060 GPU 的 Ubuntu 16.04。

更新:我对我的 ~/.bashrc 进行了更改文件。这样我的 LD_LIBRARY_PATH 指向 lib64 的位置,该位置在我的系统上位于:
export LD_LIBRARY_PATH=/usr/local/cuda/lib64

保存文件,然后重新启动系统并再次尝试从 iPython 内部导入 tensorflow。我再次收到一条错误消息,其中包含:
ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory

当我运行 nvidia-smi 时,结果是:

+-------------------------------------------------- ----------------------------
+
| NVIDIA-SMI 390.48 Driver Version: 390.48 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 106... Off | 00000000:01:00.0 On | N/A |
| 8% 54C P0 26W / 120W | 318MiB / 6075MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1017 G /usr/lib/xorg/Xorg 159MiB |
| 0 1826 G compiz 156MiB |
+-----------------------------------------------------------------------------+

当我运行 apt-update 时,nvidia 是运行的最后一个段,它返回以下内容:
Ign:23 http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64  InRelease
Hit:24 http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64 Release
Get:25 http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64 Release.gpg [801 B]
Ign:25 http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64 Release.gpg
Fetched 393 kB in 2min 0s (3,266 B/s)
Reading package lists... Done
W: GPG error: http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64 Release: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY F60F4B3D7FA2AF80
W: The repository 'http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64 Release' is not signed.
N: Data from such a repository can't be authenticated and is therefore potentially dangerous to use.
N: See apt-secure(8) manpage for repository creation and user configuration details.

似乎公钥是问题的一部分。我尝试运行以下命令:

sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

结果是:
Executing: /tmp/tmp.GlsZMuriaF/gpg.1.sh --fetch-keys
http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
gpg: keyserver timed out
gpg: WARNING: unable to fetch URI http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub: keyserver error
ub

最佳答案

这在 thread 中进行了讨论详细地。以下对我有用:

  • Nvida archive 下载 Cuda 9.0
  • 安装说明:
    sudo dpkg -i cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb
    sudo apt-key add /var/cuda-repo-9-0-local/7fa2af80.pub
    sudo apt-get update
    sudo apt-get install cuda
  • 更新路径
    export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}
    export LD_LIBRARY_PATH=/usr/local/cuda9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
  • 关于python-3.x - 由于 libcublas 问题,Tensorflow 将无法导入,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50260495/

    25 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com