gpt4 book ai didi

r - mlr3 PipeOps : Create branches with different data transformations and benchmark different learners within and between branches

转载 作者:行者123 更新时间:2023-12-04 04:14:31 27 4
gpt4 key购买 nike

我想使用 PipeOp 来训练学习者进行数据集的三种可选转换:

  1. 没有转换。
  2. 类(class)平衡。
  3. 类(class)平衡。

然后,我想对三个学习模型进行基准测试。

我的想法是按如下方式设置管道:

  1. 制作管道:输入 -> 估算数据集(可选)-> 分支 -> 拆分为上述三个分支 -> 在每个分支中添加学习器 -> 取消分支。
  2. 训练管道并希望(这就是我弄错的地方)结果会为每个分支中的每个学习者保存。

不幸的是,遵循这些步骤会导致单个学习器似乎“合并”了来自不同分支的所有内容。我希望得到一个长度为 3 的列表,但我得到的却是一个长度为 1 的列表。

R代码:

library(data.table)
library(paradox)
library(mlr3)
library(mlr3filters)
library(mlr3learners)
library(mlr3misc)
library(mlr3pipelines)
library(mlr3tuning)
library(mlr3viz)

learner <- lrn("classif.rpart", predict_type = "prob")
learner$param_set$values <- list(
cp = 0,
maxdepth = 21,
minbucket = 12,
minsplit = 24
)

graph =
po("imputehist") %>>%
po("branch", c("nop", "classbalancing_up", "classbalancing_down")) %>>%
gunion(list(
po("nop", id = "null"),
po("classbalancing", id = "classbalancing_down", ratio = 2, reference = 'minor'),
po("classbalancing", id = "classbalancing_up", ratio = 2, reference = 'major')
)) %>>%
gunion(list(
po("learner", learner, id = "learner_null"),
po("learner", learner, id = "learner_classbalancing_down"),
po("learner", learner, id = "learner_classbalancing_up")
)) %>>%
po("unbranch")

plot(graph)

tr <- mlr3::resample(tsk("iris"), graph, rsmp("holdout"))

tr$learners

问题 1我怎样才能得到三个不同的结果?

问题 2在取消分支后,如何在管道中对这三个结果进行基准测试?

问题 3如果我想在每个分支中添加多个学习者怎么办?我希望一些学习器插入固定的超参数,而对于其他学习器,我希望在每个分支中使用 AutoTuner 调整他们的超参数。然后,我想在每个分支中对它们进行基准测试,并从每个分支中选择“最佳”。最后,我想对三个最好的学习器进行基准测试,以得出一个最好的学习器。

非常感谢。

最佳答案

我想我已经找到了我正在寻找的答案。简而言之,我想做的是:

创建具有多个学习器的图形管道。我希望一些学习者被插入固定的超参数,而对于其他学习者,我希望调整他们的超参数。然后,我想对它们进行基准测试并选择“最佳”的。我还希望在不同的类(class)平衡策略下对学习者进行基准测试,即什么都不做、上采样和下采样。上/下采样的最佳参数设置(例如比率)也将在调整期间确定。

下面的两个例子,一个几乎做我想做的,另一个完全做我想做的。

示例1:构建一个包括所有学习器的管道,即具有固定超参数的学习器,以及超参数需要调整的学习器

正如将要展示的那样,同时拥有两种学习器(即具有固定和可调超参数)似乎不是一个好主意,因为调整管道会忽略具有可调超参数的学习器。

####################################################################################
# Build Machine Learning pipeline that:
# 1. Imputes missing values (optional).
# 2. Tunes and benchmarks a range of learners.
# 3. Handles imbalanced data in different ways.
# 4. Identifies optimal learner for the task at hand.

# Abbreviations
# 1. td: Tuned. Learner already tuned with optimal hyperparameters, as found empirically by Probst et al. (2009). See http://jmlr.csail.mit.edu/papers/volume20/18-444/18-444.pdf
# 2. tn: Tuner. Optimal hyperparameters for the learner to be determined within the Tuner.
# 3. raw: Raw dataset in that class imbalances were not treated in any way.
# 4. up: Data upsampling to balance class imbalances.
# 5. down: Data downsampling to balance class imbalances.

# References
# Probst et al. (2009). http://jmlr.csail.mit.edu/papers/volume20/18-444/18-444.pdf
####################################################################################

task <- tsk('sonar')

# Indices for splitting data into training and test sets
train.idx <- task$data() %>%
select(Class) %>%
rownames_to_column %>%
group_by(Class) %>%
sample_frac(2 / 3) %>% # Stratified sample to maintain proportions between classes.
ungroup %>%
select(rowname) %>%
deframe %>%
as.numeric
test.idx <- setdiff(seq_len(task$nrow), train.idx)

# Define training and test sets in task format
task_train <- task$clone()$filter(train.idx)
task_test <- task$clone()$filter(test.idx)

# Define class balancing strategies
class_counts <- table(task_train$truth())
upsample_ratio <- class_counts[class_counts == max(class_counts)] /
class_counts[class_counts == min(class_counts)]
downsample_ratio <- 1 / upsample_ratio

# 1. Enrich minority class by factor 'ratio'
po_over <- po("classbalancing", id = "up", adjust = "minor",
reference = "minor", shuffle = FALSE, ratio = upsample_ratio)

# 2. Reduce majority class by factor '1/ratio'
po_under <- po("classbalancing", id = "down", adjust = "major",
reference = "major", shuffle = FALSE, ratio = downsample_ratio)

# 3. No class balancing
po_raw <- po("nop", id = "raw") # Pipe operator for 'do nothing' ('nop'), i.e. don't up/down-balance the classes.

# We will be using an XGBoost learner throughout with different hyperparameter settings.

# Define XGBoost learner with the optimal hyperparameters of Probst et al.
# Learner will be added to the pipeline later on, in conjuction with and without class balancing.
xgb_td <- lrn("classif.xgboost", predict_type = 'prob')
xgb_td$param_set$values <- list(
booster = "gbtree",
nrounds = 2563,
max_depth = 11,
min_child_weight = 1.75,
subsample = 0.873,
eta = 0.052,
colsample_bytree = 0.713,
colsample_bylevel = 0.638,
lambda = 0.101,
alpha = 0.894
)

xgb_td_raw <- GraphLearner$new(
po_raw %>>%
po('learner', xgb_td, id = 'xgb_td'),
predict_type = 'prob'
)

xgb_tn_raw <- GraphLearner$new(
po_raw %>>%
po('learner', lrn("classif.xgboost",
predict_type = 'prob'), id = 'xgb_tn'),
predict_type = 'prob'
)

xgb_td_up <- GraphLearner$new(
po_over %>>%
po('learner', xgb_td, id = 'xgb_td'),
predict_type = 'prob'
)

xgb_tn_up <- GraphLearner$new(
po_over %>>%
po('learner', lrn("classif.xgboost",
predict_type = 'prob'), id = 'xgb_tn'),
predict_type = 'prob'
)

xgb_td_down <- GraphLearner$new(
po_under %>>%
po('learner', xgb_td, id = 'xgb_td'),
predict_type = 'prob'
)

xgb_tn_down <- GraphLearner$new(
po_under %>>%
po('learner', lrn("classif.xgboost",
predict_type = 'prob'), id = 'xgb_tn'),
predict_type = 'prob'
)

learners_all <- list(
xgb_td_raw,
xgb_tn_raw,
xgb_td_up,
xgb_tn_up,
xgb_td_down,
xgb_tn_down
)
names(learners_all) <- sapply(learners_all, function(x) x$id)

# Create pipeline as a graph. This way, pipeline can be plotted. Pipeline can then be converted into a learner with GraphLearner$new(pipeline).
# Pipeline is a collection of Graph Learners (type ?GraphLearner in the command line for info).
# Each GraphLearner is a td or tn model (see abbreviations above) with or without class balancing.
# Up/down or no sampling happens within each GraphLearner, otherwise an error during tuning indicates that there are >= 2 data sources.
# Up/down or no sampling within each GraphLearner can be specified by chaining the relevant pipe operators (function po(); type ?PipeOp in command line) with the PipeOp of each learner.
graph <-
#po("imputehist") %>>% # Optional. Impute missing values only when using classifiers that can't handle them (e.g. Random Forest).
po("branch", names(learners_all)) %>>%
gunion(unname(learners_all)) %>>%
po("unbranch")

graph$plot() # Plot pipeline

pipe <- GraphLearner$new(graph) # Convert pipeline to learner
pipe$predict_type <- 'prob' # Don't forget to specify we want to predict probabilities and not classes.

ps_table <- as.data.table(pipe$param_set)
View(ps_table[, 1:4])

# Set hyperparameter ranges for the tunable learners
ps_xgboost <- ps_table$id %>%
lapply(
function(x) {
if (grepl('_tn', x)) {
if (grepl('.booster', x)) {
ParamFct$new(x, levels = "gbtree")
} else if (grepl('.nrounds', x)) {
ParamInt$new(x, lower = 100, upper = 110)
} else if (grepl('.max_depth', x)) {
ParamInt$new(x, lower = 3, upper = 10)
} else if (grepl('.min_child_weight', x)) {
ParamDbl$new(x, lower = 0, upper = 10)
} else if (grepl('.subsample', x)) {
ParamDbl$new(x, lower = 0, upper = 1)
} else if (grepl('.eta', x)) {
ParamDbl$new(x, lower = 0.1, upper = 0.6)
} else if (grepl('.colsample_bytree', x)) {
ParamDbl$new(x, lower = 0.5, upper = 1)
} else if (grepl('.gamma', x)) {
ParamDbl$new(x, lower = 0, upper = 5)
}
}
}
)
ps_xgboost <- Filter(Negate(is.null), ps_xgboost)
ps_xgboost <- ParamSet$new(ps_xgboost)

# Se parameter ranges for the class balancing strategies
ps_class_balancing <- ps_table$id %>%
lapply(
function(x) {
if (all(grepl('up.', x), grepl('.ratio', x))) {
ParamDbl$new(x, lower = 1, upper = upsample_ratio)
} else if (all(grepl('down.', x), grepl('.ratio', x))) {
ParamDbl$new(x, lower = downsample_ratio, upper = 1)
}
}
)
ps_class_balancing <- Filter(Negate(is.null), ps_class_balancing)
ps_class_balancing <- ParamSet$new(ps_class_balancing)

# Define parameter set
param_set <- ParamSetCollection$new(list(
ParamSet$new(list(pipe$param_set$params$branch.selection$clone())), # ParamFct can be copied.
ps_xgboost,
ps_class_balancing
))

# Add dependencies. For instance, we can only set the mtry value if the pipe is configured to use the Random Forest (ranger).
# In a similar manner, we want do add a dependency between, e.g. hyperparameter "raw.xgb_td.xgb_tn.booster" and branch "raw.xgb_td"
# See https://mlr3gallery.mlr-org.com/tuning-over-multiple-learners/
param_set$ids()[-1] %>%
lapply(
function(x) {
aux <- names(learners_all) %>%
sapply(
function(y) {
grepl(y, x)
}
)
aux <- names(aux[aux])
param_set$add_dep(x, "branch.selection",
CondEqual$new(aux))
}
)

# Set up tuning instance
instance <- TuningInstance$new(
task = task_train,
learner = pipe,
resampling = rsmp('cv', folds = 2),
measures = msr("classif.bbrier"),
#measures = prc_micro,
param_set,
terminator = term("evals", n_evals = 3))
tuner <- TunerRandomSearch$new()

# Tune pipe learner to find best-performing branch
tuner$tune(instance)

instance$result
instance$archive()
instance$archive(unnest = "tune_x") # Unnest the tuner search space values

pipe$param_set$values <- instance$result$params
pipe$train(task_train)

pred <- pipe$predict(task_test)
pred$confusion

请注意,调优器选择忽略可调学习器的调优,而只关注调优学习器。这可以通过检查 instance$result 来确认:唯一为可调学习器调整的是类平衡参数,它们实际上不是学习器超参数。

示例 2:构建仅包含可调学习器的管道,找到“最佳”学习器,然后在第二阶段针对具有固定超参数的学习器进行基准测试。

第 1 步:为可调学习器构建管道

learners_all <- list(
#xgb_td_raw,
xgb_tn_raw,
#xgb_td_up,
xgb_tn_up,
#xgb_td_down,
xgb_tn_down
)
names(learners_all) <- sapply(learners_all, function(x) x$id)

# Create pipeline as a graph. This way, pipeline can be plotted. Pipeline can then be converted into a learner with GraphLearner$new(pipeline).
# Pipeline is a collection of Graph Learners (type ?GraphLearner in the command line for info).
# Each GraphLearner is a td or tn model (see abbreviations above) with or without class balancing.
# Up/down or no sampling happens within each GraphLearner, otherwise an error during tuning indicates that there are >= 2 data sources.
# Up/down or no sampling within each GraphLearner can be specified by chaining the relevant pipe operators (function po(); type ?PipeOp in command line) with the PipeOp of each learner.
graph <-
#po("imputehist") %>>% # Optional. Impute missing values only when using classifiers that can't handle them (e.g. Random Forest).
po("branch", names(learners_all)) %>>%
gunion(unname(learners_all)) %>>%
po("unbranch")

graph$plot() # Plot pipeline

pipe <- GraphLearner$new(graph) # Convert pipeline to learner
pipe$predict_type <- 'prob' # Don't forget to specify we want to predict probabilities and not classes.

ps_table <- as.data.table(pipe$param_set)
View(ps_table[, 1:4])

ps_xgboost <- ps_table$id %>%
lapply(
function(x) {
if (grepl('_tn', x)) {
if (grepl('.booster', x)) {
ParamFct$new(x, levels = "gbtree")
} else if (grepl('.nrounds', x)) {
ParamInt$new(x, lower = 100, upper = 110)
} else if (grepl('.max_depth', x)) {
ParamInt$new(x, lower = 3, upper = 10)
} else if (grepl('.min_child_weight', x)) {
ParamDbl$new(x, lower = 0, upper = 10)
} else if (grepl('.subsample', x)) {
ParamDbl$new(x, lower = 0, upper = 1)
} else if (grepl('.eta', x)) {
ParamDbl$new(x, lower = 0.1, upper = 0.6)
} else if (grepl('.colsample_bytree', x)) {
ParamDbl$new(x, lower = 0.5, upper = 1)
} else if (grepl('.gamma', x)) {
ParamDbl$new(x, lower = 0, upper = 5)
}
}
}
)
ps_xgboost <- Filter(Negate(is.null), ps_xgboost)
ps_xgboost <- ParamSet$new(ps_xgboost)

ps_class_balancing <- ps_table$id %>%
lapply(
function(x) {
if (all(grepl('up.', x), grepl('.ratio', x))) {
ParamDbl$new(x, lower = 1, upper = upsample_ratio)
} else if (all(grepl('down.', x), grepl('.ratio', x))) {
ParamDbl$new(x, lower = downsample_ratio, upper = 1)
}
}
)
ps_class_balancing <- Filter(Negate(is.null), ps_class_balancing)
ps_class_balancing <- ParamSet$new(ps_class_balancing)

param_set <- ParamSetCollection$new(list(
ParamSet$new(list(pipe$param_set$params$branch.selection$clone())), # ParamFct can be copied.
ps_xgboost,
ps_class_balancing
))

# Add dependencies. For instance, we can only set the mtry value if the pipe is configured to use the Random Forest (ranger).
# In a similar manner, we want do add a dependency between, e.g. hyperparameter "raw.xgb_td.xgb_tn.booster" and branch "raw.xgb_td"
# See https://mlr3gallery.mlr-org.com/tuning-over-multiple-learners/
param_set$ids()[-1] %>%
lapply(
function(x) {
aux <- names(learners_all) %>%
sapply(
function(y) {
grepl(y, x)
}
)
aux <- names(aux[aux])
param_set$add_dep(x, "branch.selection",
CondEqual$new(aux))
}
)

# Set up tuning instance
instance <- TuningInstance$new(
task = task_train,
learner = pipe,
resampling = rsmp('cv', folds = 2),
measures = msr("classif.bbrier"),
#measures = prc_micro,
param_set,
terminator = term("evals", n_evals = 3))
tuner <- TunerRandomSearch$new()

# Tune pipe learner to find best-performing branch
tuner$tune(instance)

instance$result
instance$archive()
instance$archive(unnest = "tune_x") # Unnest the tuner search space values

pipe$param_set$values <- instance$result$params
pipe$train(task_train)

pred <- pipe$predict(task_test)
pred$confusion

请注意,现在 instance$result 也为学习者的超参数返回最佳结果,而不仅仅是类平衡参数。

第 2 步:基准“最佳”可调学习器(现已调整)和具有固定超参数的学习器

# Define re-sampling and instantiate it so always the same split will be used

resampling <- rsmp("cv", folds = 2)

set.seed(123)
resampling$instantiate(task_train)

bmr <- benchmark(
design = benchmark_grid(
task_train,
learner = list(pipe, xgb_td_raw, xgb_td_up, xgb_tn_down),
resampling
),
store_models = TRUE # Only needed if you want to inspect the models
)

bmr$aggregate(msr("classif.bbrier"))

需要考虑的几个问题

  1. 我应该为具有固定超参数的学习者,以便至少类平衡参数调整。然后,两个管道(可调和固定超参数)将使用 benchmark() 进行基准测试。
  2. 我应该从头到尾使用相同的重采样策略?即,正确实例化重采样策略在调整第一个管道之前,以便此策略也用于第二个管道和最终基准。

非常欢迎评论/验证。

(特别感谢missuse的建设性意见)

关于r - mlr3 PipeOps : Create branches with different data transformations and benchmark different learners within and between branches,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61014457/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com