- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 keras 和 tensorflow 构建一个简单的回归模型。在我的问题中,我有 (x, y)
形式的数据,其中 x
和 y
只是数字。我想构建一个 keras 模型,以便使用 x
作为输入来预测 y
。
因为我认为图像能更好地解释事物,所以这些是我的数据:
我们可以讨论他们好不好,但在我的问题上我真的不能欺骗他们。
我的 keras 模型如下(数据分为 30% 测试 (X_test, y_test)
和 70% 训练 (X_train, y_train)
):
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(32, input_shape=() activation="relu", name="first_layer"))
model.add(tf.keras.layers.Dense(16, activation="relu", name="second_layer"))
model.add(tf.keras.layers.Dense(1, name="output_layer"))
model.compile(loss = "mean_squared_error", optimizer = "adam", metrics=["mse"] )
history = model.fit(X_train, y_train, epochs=500, batch_size=1, verbose=0, shuffle=False)
eval_result = model.evaluate(X_test, y_test)
print("\n\nTest loss:", eval_result, "\n")
predict_Y = model.predict(X)
注意:X
包含X_test
和X_train
。
绘制我得到的预测(蓝色方 block 是预测 predict_Y
)
我经常使用图层、激活函数和其他参数。我的目标是找到训练模型的最佳参数,但这里的实际问题略有不同:事实上,我很难强制模型过度拟合数据(从上面的结果可以看出)。
有没有人对如何重现过度拟合有某种想法?
(红点在蓝色方 block 下面!)
编辑:
这里我为你提供了上面例子中使用的数据:你可以直接复制粘贴到python解释器:
X_train = [0.704619794270697, 0.6779457393024553, 0.8207082120250023, 0.8588819357831449, 0.8692320257603844, 0.6878750931810429, 0.9556331888763945, 0.77677964510883, 0.7211381534179618, 0.6438319113259414, 0.6478339581502052, 0.9710222750072649, 0.8952188423349681, 0.6303124926673513, 0.9640316662124185, 0.869691568491902, 0.8320164648420931, 0.8236399177660375, 0.8877334038470911, 0.8084042532069621, 0.8045680821762038]
y_train = [0.7766424210611557, 0.8210846773655833, 0.9996114311913593, 0.8041331063189883, 0.9980525368790883, 0.8164056182686034, 0.8925487603333683, 0.7758207470960685, 0.37345286573743475, 0.9325789202459493, 0.6060269037514895, 0.9319771743389491, 0.9990691225991941, 0.9320002808310418, 0.9992560731072977, 0.9980241561997089, 0.8882905258641204, 0.4678339275898943, 0.9312152374846061, 0.9542371205095945, 0.8885893668675711]
X_test = [0.9749191829308574, 0.8735366740730178, 0.8882783211709133, 0.8022891400991644, 0.8650601322313454, 0.8697902997857514, 1.0, 0.8165876695985228, 0.8923841531760973]
y_test = [0.975653685270635, 0.9096752789481569, 0.6653736469114154, 0.46367666660348744, 0.9991817903431941, 1.0, 0.9111205717076893, 0.5264993912088891, 0.9989199241685126]
X = [0.704619794270697, 0.77677964510883, 0.7211381534179618, 0.6478339581502052, 0.6779457393024553, 0.8588819357831449, 0.8045680821762038, 0.8320164648420931, 0.8650601322313454, 0.8697902997857514, 0.8236399177660375, 0.6878750931810429, 0.8923841531760973, 0.8692320257603844, 0.8877334038470911, 0.8735366740730178, 0.8207082120250023, 0.8022891400991644, 0.6303124926673513, 0.8084042532069621, 0.869691568491902, 0.9710222750072649, 0.9556331888763945, 0.8882783211709133, 0.8165876695985228, 0.6438319113259414, 0.8952188423349681, 0.9749191829308574, 1.0, 0.9640316662124185]
Y = [0.7766424210611557, 0.7758207470960685, 0.37345286573743475, 0.6060269037514895, 0.8210846773655833, 0.8041331063189883, 0.8885893668675711, 0.8882905258641204, 0.9991817903431941, 1.0, 0.4678339275898943, 0.8164056182686034, 0.9989199241685126, 0.9980525368790883, 0.9312152374846061, 0.9096752789481569, 0.9996114311913593, 0.46367666660348744, 0.9320002808310418, 0.9542371205095945, 0.9980241561997089, 0.9319771743389491, 0.8925487603333683, 0.6653736469114154, 0.5264993912088891, 0.9325789202459493, 0.9990691225991941, 0.975653685270635, 0.9111205717076893, 0.9992560731072977]
其中 X
包含 x 值的列表,Y
包含相应的 y 值。 (X_test, y_test) 和 (X_train, y_train) 是 (X, Y) 的两个(非重叠)子集。
为了预测和显示模型结果,我只使用了 matplotlib(作为 plt 导入):
predict_Y = model.predict(X)
plt.plot(X, Y, "ro", X, predict_Y, "bs")
plt.show()
最佳答案
过度拟合的模型在现实生活中很少有用。在我看来,OP 很清楚这一点,但想看看 NN 是否确实能够拟合(有界的)任意函数。一方面,示例中的输入输出数据似乎 不遵循任何可识别的模式。另一方面,输入和输出都是 [0, 1] 中的标量,并且训练集中只有 21 个数据点。
根据我的实验和结果,我们确实可以按要求过拟合。请参见下图。
数值结果:
x y_true y_pred error
0 0.704620 0.776642 0.773753 -0.002889
1 0.677946 0.821085 0.819597 -0.001488
2 0.820708 0.999611 0.999813 0.000202
3 0.858882 0.804133 0.805160 0.001026
4 0.869232 0.998053 0.997862 -0.000190
5 0.687875 0.816406 0.814692 -0.001714
6 0.955633 0.892549 0.893117 0.000569
7 0.776780 0.775821 0.779289 0.003469
8 0.721138 0.373453 0.374007 0.000554
9 0.643832 0.932579 0.912565 -0.020014
10 0.647834 0.606027 0.607253 0.001226
11 0.971022 0.931977 0.931549 -0.000428
12 0.895219 0.999069 0.999051 -0.000018
13 0.630312 0.932000 0.930252 -0.001748
14 0.964032 0.999256 0.999204 -0.000052
15 0.869692 0.998024 0.997859 -0.000165
16 0.832016 0.888291 0.887883 -0.000407
17 0.823640 0.467834 0.460728 -0.007106
18 0.887733 0.931215 0.932790 0.001575
19 0.808404 0.954237 0.960282 0.006045
20 0.804568 0.888589 0.906829 0.018240
{'me': -0.00015776709314323828,
'mae': 0.00329163070145315,
'mse': 4.0713782563067185e-05,
'rmse': 0.006380735268216915}
OP 的代码对我来说似乎不错。我的改动很小:
代码如下。
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, BatchNormalization
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
# Set seed just to have reproducible results
np.random.seed(84)
tf.random.set_seed(84)
# Load data from the post
# https://stackoverflow.com/questions/61252785/how-to-overfit-data-with-keras
X_train = np.array([0.704619794270697, 0.6779457393024553, 0.8207082120250023,
0.8588819357831449, 0.8692320257603844, 0.6878750931810429,
0.9556331888763945, 0.77677964510883, 0.7211381534179618,
0.6438319113259414, 0.6478339581502052, 0.9710222750072649,
0.8952188423349681, 0.6303124926673513, 0.9640316662124185,
0.869691568491902, 0.8320164648420931, 0.8236399177660375,
0.8877334038470911, 0.8084042532069621,
0.8045680821762038])
Y_train = np.array([0.7766424210611557, 0.8210846773655833, 0.9996114311913593,
0.8041331063189883, 0.9980525368790883, 0.8164056182686034,
0.8925487603333683, 0.7758207470960685,
0.37345286573743475, 0.9325789202459493,
0.6060269037514895, 0.9319771743389491, 0.9990691225991941,
0.9320002808310418, 0.9992560731072977, 0.9980241561997089,
0.8882905258641204, 0.4678339275898943, 0.9312152374846061,
0.9542371205095945, 0.8885893668675711])
X_test = np.array([0.9749191829308574, 0.8735366740730178, 0.8882783211709133,
0.8022891400991644, 0.8650601322313454, 0.8697902997857514,
1.0, 0.8165876695985228, 0.8923841531760973])
Y_test = np.array([0.975653685270635, 0.9096752789481569, 0.6653736469114154,
0.46367666660348744, 0.9991817903431941, 1.0,
0.9111205717076893, 0.5264993912088891, 0.9989199241685126])
X = np.array([0.704619794270697, 0.77677964510883, 0.7211381534179618,
0.6478339581502052, 0.6779457393024553, 0.8588819357831449,
0.8045680821762038, 0.8320164648420931, 0.8650601322313454,
0.8697902997857514, 0.8236399177660375, 0.6878750931810429,
0.8923841531760973, 0.8692320257603844, 0.8877334038470911,
0.8735366740730178, 0.8207082120250023, 0.8022891400991644,
0.6303124926673513, 0.8084042532069621, 0.869691568491902,
0.9710222750072649, 0.9556331888763945, 0.8882783211709133,
0.8165876695985228, 0.6438319113259414, 0.8952188423349681,
0.9749191829308574, 1.0, 0.9640316662124185])
Y = np.array([0.7766424210611557, 0.7758207470960685, 0.37345286573743475,
0.6060269037514895, 0.8210846773655833, 0.8041331063189883,
0.8885893668675711, 0.8882905258641204, 0.9991817903431941, 1.0,
0.4678339275898943, 0.8164056182686034, 0.9989199241685126,
0.9980525368790883, 0.9312152374846061, 0.9096752789481569,
0.9996114311913593, 0.46367666660348744, 0.9320002808310418,
0.9542371205095945, 0.9980241561997089, 0.9319771743389491,
0.8925487603333683, 0.6653736469114154, 0.5264993912088891,
0.9325789202459493, 0.9990691225991941, 0.975653685270635,
0.9111205717076893, 0.9992560731072977])
# Reshape all data to be of the shape (batch_size, 1)
X_train = X_train.reshape((-1, 1))
Y_train = Y_train.reshape((-1, 1))
X_test = X_test.reshape((-1, 1))
Y_test = Y_test.reshape((-1, 1))
X = X.reshape((-1, 1))
Y = Y.reshape((-1, 1))
# Is data scaled? NNs do well with bounded data.
assert np.all(X_train >= 0) and np.all(X_train <= 1)
assert np.all(Y_train >= 0) and np.all(Y_train <= 1)
assert np.all(X_test >= 0) and np.all(X_test <= 1)
assert np.all(Y_test >= 0) and np.all(Y_test <= 1)
assert np.all(X >= 0) and np.all(X <= 1)
assert np.all(Y >= 0) and np.all(Y <= 1)
# Build a model with variable number of hidden layers.
# We will use Keras functional API.
# https://www.perfectlyrandom.org/2019/06/24/a-guide-to-keras-functional-api/
n_dense_layers = 30 # increase this to get more complicated models
# Define the layers first.
input_tensor = Input(shape=(1,), name='input')
layers = []
for i in range(n_dense_layers):
layers += [Dense(units=50, activation='relu', name=f'dense_layer_{i}')]
if (i > 0) & (i % 5 == 0):
# avg over batches not features
layers += [BatchNormalization(axis=1)]
sigmoid_layer = Dense(units=1, activation='sigmoid', name='sigmoid_layer')
# Connect the layers using Keras Functional API
mid_layer = input_tensor
for dense_layer in layers:
mid_layer = dense_layer(mid_layer)
output_tensor = sigmoid_layer(mid_layer)
model = Model(inputs=[input_tensor], outputs=[output_tensor])
optimizer = Adam(learning_rate=0.0005)
model.compile(optimizer=optimizer, loss='mae', metrics=['mae'])
model.fit(x=[X_train], y=[Y_train], epochs=40000, batch_size=21)
# Predict on various datasets
Y_train_pred = model.predict(X_train)
# Create a dataframe to inspect results manually
train_df = pd.DataFrame({
'x': X_train.reshape((-1)),
'y_true': Y_train.reshape((-1)),
'y_pred': Y_train_pred.reshape((-1))
})
train_df['error'] = train_df['y_pred'] - train_df['y_true']
print(train_df)
# A dictionary to store all the errors in one place.
train_errors = {
'me': np.mean(train_df['error']),
'mae': np.mean(np.abs(train_df['error'])),
'mse': np.mean(np.square(train_df['error'])),
'rmse': np.sqrt(np.mean(np.square(train_df['error']))),
}
print(train_errors)
# Make a plot to visualize true vs predicted
plt.figure(1)
plt.clf()
plt.plot(train_df['x'], train_df['y_true'], 'r.', label='y_true')
plt.plot(train_df['x'], train_df['y_pred'], 'bo', alpha=0.25, label='y_pred')
plt.grid(True)
plt.xlabel('x')
plt.ylabel('y')
plt.title(f'Train data. MSE={np.round(train_errors["mse"], 5)}.')
plt.legend()
plt.show(block=False)
plt.savefig('true_vs_pred.png')
关于machine-learning - 如何使用 Keras 过拟合数据?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61252785/
我在网上搜索但没有找到任何合适的文章解释如何使用 javascript 使用 WCF 服务,尤其是 WebScriptEndpoint。 任何人都可以对此给出任何指导吗? 谢谢 最佳答案 这是一篇关于
我正在编写一个将运行 Linux 命令的 C 程序,例如: cat/etc/passwd | grep 列表 |剪切-c 1-5 我没有任何结果 *这里 parent 等待第一个 child (chi
所以我正在尝试处理文件上传,然后将该文件作为二进制文件存储到数据库中。在我存储它之后,我尝试在给定的 URL 上提供文件。我似乎找不到适合这里的方法。我需要使用数据库,因为我使用 Google 应用引
我正在尝试制作一个宏,将下面的公式添加到单元格中,然后将其拖到整个列中并在 H 列中复制相同的公式 我想在 F 和 H 列中输入公式的数据 Range("F1").formula = "=IF(ISE
问题类似于this one ,但我想使用 OperatorPrecedenceParser 解析带有函数应用程序的表达式在 FParsec . 这是我的 AST: type Expression =
我想通过使用 sequelize 和 node.js 将这个查询更改为代码取决于在哪里 select COUNT(gender) as genderCount from customers where
我正在使用GNU bash,版本5.0.3(1)-发行版(x86_64-pc-linux-gnu),我想知道为什么简单的赋值语句会出现语法错误: #/bin/bash var1=/tmp
这里,为什么我的代码在 IE 中不起作用。我的代码适用于所有浏览器。没有问题。但是当我在 IE 上运行我的项目时,它发现错误。 而且我的 jquery 类和 insertadjacentHTMl 也不
我正在尝试更改标签的innerHTML。我无权访问该表单,因此无法编辑 HTML。标签具有的唯一标识符是“for”属性。 这是输入和标签的结构:
我有一个页面,我可以在其中返回用户帖子,可以使用一些 jquery 代码对这些帖子进行即时评论,在发布新评论后,我在帖子下插入新评论以及删除 按钮。问题是 Delete 按钮在新插入的元素上不起作用,
我有一个大约有 20 列的“管道分隔”文件。我只想使用 sha1sum 散列第一列,它是一个数字,如帐号,并按原样返回其余列。 使用 awk 或 sed 执行此操作的最佳方法是什么? Accounti
我需要将以下内容插入到我的表中...我的用户表有五列 id、用户名、密码、名称、条目。 (我还没有提交任何东西到条目中,我稍后会使用 php 来做)但由于某种原因我不断收到这个错误:#1054 - U
所以我试图有一个输入字段,我可以在其中输入任何字符,但然后将输入的值小写,删除任何非字母数字字符,留下“。”而不是空格。 例如,如果我输入: 地球的 70% 是水,-!*#$^^ & 30% 土地 输
我正在尝试做一些我认为非常简单的事情,但出于某种原因我没有得到想要的结果?我是 javascript 的新手,但对 java 有经验,所以我相信我没有使用某种正确的规则。 这是一个获取输入值、检查选择
我想使用 angularjs 从 mysql 数据库加载数据。 这就是应用程序的工作原理;用户登录,他们的用户名存储在 cookie 中。该用户名显示在主页上 我想获取这个值并通过 angularjs
我正在使用 autoLayout,我想在 UITableViewCell 上放置一个 UIlabel,它应该始终位于单元格的右侧和右侧的中心。 这就是我想要实现的目标 所以在这里你可以看到我正在谈论的
我需要与 MySql 等效的 elasticsearch 查询。我的 sql 查询: SELECT DISTINCT t.product_id AS id FROM tbl_sup_price t
我正在实现代码以使用 JSON。 func setup() { if let flickrURL = NSURL(string: "https://api.flickr.com/
我尝试使用for循环声明变量,然后测试cols和rols是否相同。如果是,它将运行递归函数。但是,我在 javascript 中执行 do 时遇到问题。有人可以帮忙吗? 现在,在比较 col.1 和
我举了一个我正在处理的问题的简短示例。 HTML代码: 1 2 3 CSS 代码: .BB a:hover{ color: #000; } .BB > li:after {
我是一名优秀的程序员,十分优秀!