- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我是 TensorFlow 的新手,正在学习。我定义了一些变量并开始训练。第一个时期一切顺利,但突然抛出以下错误:
tensorflow.python.framework.errors_impl.InvalidArgumentError: 2 root error(s) found.
(0) Invalid argument: Matrix size-incompatible: In[0]: [17952,50], In[1]: [0,20]
[[{{node gradients/Embeddings_1/MatMul_grad/MatMul_1}}]]
[[gradients/Embeddings_1/MatMul_grad/tuple/control_dependency/_1867]]
(1) Invalid argument: Matrix size-incompatible: In[0]: [17952,50], In[1]: [0,20]
[[{{node gradients/Embeddings_1/MatMul_grad/MatMul_1}}]]
我的问题是为什么它在一些时代之后而不是一开始就给出了错误。通常,在构建图形时会抛出这些类型的错误。
这是我创建变量和嵌入树的代码:
def __init__(self, vocab, embedding):
self.add_model_variables()
with tf.variable_scope("Embeddings", reuse=True):
with tf.device('/cpu:0'):
w_embed = tf.get_variable('WE', [self.vocab_embedding_size, self.embed_size])
b_embed = tf.get_variable('bE', [1, self.embed_size])
embeddings = tf.get_variable('embeddings')
self.embeddings = tf.add(tf.matmul(embeddings, w_embed), b_embed)
def add_model_variables(self):
myinitilizer = tf.random_uniform_initializer(-self.calc_wt_init(),self.calc_wt_init())
with tf.variable_scope('Embeddings'):
with tf.device('/cpu:0'):
w_embed = tf.get_variable('WE', [self.vocab_embedding_size, self.embed_size], initializer = myinitilizer)
b_embed = tf.get_variable('bE', [1, self.embed_size], initializer = myinitilizer)
embeddings = tf.get_variable('embeddings',
initializer=tf.convert_to_tensor(self.pretrained_embedding),
dtype=tf.float32)
with tf.variable_scope('Composition'):
self.W1 = tf.get_variable('W1', [2 * self.embed_size, self.embed_size], initializer = myinitilizer)
self.b1 = tf.get_variable('b1', [1, self.embed_size], initializer = myinitilizer)
with tf.variable_scope('Projection'):
self.U = tf.get_variable('U', [self.embed_size, 1], initializer = myinitilizer)
self.bu = tf.get_variable('bu', [self.max_number_nodes, 1], initializer = myinitilizer)
def embed_tree(self, batch_index):
def combine_children( left_tensor, right_tensor):
return tf.nn.relu(tf.matmul(tf.concat([left_tensor, right_tensor], axis=1, name='combine_children'), self.W1) + self.b1)
def embed_word(word_index):
with tf.device('/cpu:0'):
return tf.expand_dims(tf.gather(self.embeddings, word_index), 0)
def loop_body(node_tensors, i):
node_is_leaf = tf.gather(is_leaf, i)
word = tf.gather(words, i)
left_child = tf.gather(left_children, i)
right_child = tf.gather(right_children, i)
node_tensor = tf.cond(
node_is_leaf,
lambda: embed_word(word),
lambda: combine_children(
node_tensors.read(n-right_child),
node_tensors.read(n-left_child)))
node_tensors = node_tensors.write(i, node_tensor)
i = tf.add(i, 1)
return node_tensors, i
is_leaf = tf.gather(self.batch_is_leaf, batch_index)
left_children = tf.gather(self.batch_left_children, batch_index)
right_children = tf.gather(self.batch_right_children, batch_index)
words = tf.gather(self.batch_words, batch_index)
n = tf.reduce_sum(tf.cast(tf.not_equal(left_children, -1), tf.int32))-2
#iself.batch_operation = tf.print(batch_index,'N::::::::',output_stream=sys.stdout)
node_tensors = tf.TensorArray(tf.float32, size=self.max_number_nodes,
dynamic_size=False, clear_after_read=False, element_shape=[1, self.embed_size])
loop_cond = lambda node_tensors, i: tf.less(i, n+2)
#with tf.control_dependencies([self.batch_operation]):
node_tensors, _ = tf.while_loop(loop_cond, loop_body, [node_tensors, 0], parallel_iterations=1)
tree_embedding = tf.convert_to_tensor(node_tensors.stack())
return tree_embedding
另一个问题是我无法复制错误,因为它偶尔会发生。
更新:
当我减小 batch_size 时,出现此错误的几率就会降低。这可能是因为工作接近 GPU 内存限制吗?
最佳答案
tf.gather 在 GPU 上为无效索引生成零(但它在 CPU 上正常工作)。换句话说,Tensorflow 在 GPU 上运行时不会检查索引的范围。
由返回的 0 引起的错误在梯度上累积,最终导致与原始问题无关的困惑错误消息。
供引用:
https://github.com/tensorflow/tensorflow/issues/3638
我将 tf.gather 更改为基于索引的检索(a[i]),问题已解决。我不知道为什么!
关于tensorflow - tf.Variables 的维度在一些时期后发生变化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61447546/
在 Tensorflow(从 v1.2.1 开始)中,似乎有(至少)两个并行 API 来构建计算图。 tf.nn 中有函数,如 conv2d、avg_pool、relu、dropout,tf.laye
我正在处理眼睛轨迹数据和卷积神经网络。我被要求使用 tf.reduce_max(lastconv, axis=2)代替 MaxPooling 层和 tf.reduce_sum(lastconv,axi
TensorFlow 提供了 3 种不同的数据存储格式 tf.train.Feature .它们是: tf.train.BytesList tf.train.FloatList tf.train.In
我正在尝试为上下文强盗问题 (https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part
我在使用 Tensorflow 时遇到问题: 以下代码为卷积 block 生成正确的图: def conv_layer(self, inputs, filter_size = 3, num_filte
我正在将我的训练循环迁移到 Tensorflow 2.0 API .在急切执行模式下,tf.GradientTape替换 tf.gradients .问题是,它们是否具有相同的功能?具体来说: 在函数
tensorflow 中 tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) 的目的是什么? 更多上下文:
我一直在努力学习 TensorFlow,我注意到不同的函数用于相同的目标。例如,为了平方变量,我看到了 tf.square()、tf.math.square() 和 tf.keras.backend.
我正在尝试使用自动编码器开发图像着色器。有 13000 张训练图像。如果我使用 tf.data,每个 epoch 大约需要 45 分钟,如果我使用 tf.utils.keras.Sequence 大约
我尝试按照 tensorflow 教程实现 MNIST CNN 神经网络,并找到这些实现 softmax 交叉熵的方法给出了不同的结果: (1) 不好的结果 softmax = tf.nn.softm
其实,我正在coursera上做deeplearning.ai的作业“Art Generation with Neural Style Transfer”。在函数 compute_layer_styl
训练神经网络学习“异或” 我正在尝试使用“批量归一化”,我创建了一个批量归一化层函数“batch_norm1”。 import tensorflow as tf import nump
我正在尝试协调来自 TF“图形和 session ”指南以及 TF“Keras”指南和 TF Estimators 指南的信息。现在在前者中它说 tf.Session 使计算图能够访问物理硬件以执行图
我正在关注此处的多层感知器示例:https://github.com/aymericdamien/TensorFlow-Examples我对函数 tf.nn.softmax_cross_entropy
回到 TensorFlow = 2.0 中消失了。因此,像这样的解决方案...... with tf.variable_scope("foo"): with tf.variable_scope
我按照官方网站中的步骤安装了tensorflow。但是,在该网站中,作为安装的最后一步,他们给出了一行代码来“验证安装”。但他们没有告诉这段代码会给出什么输出。 该行是: python -c "imp
代码: x = tf.constant([1.,2.,3.], shape = (3,2,4)) y = tf.constant([1.,2.,3.], shape = (3,21,4)) tf.ma
我正在尝试从 Github 训练一个 3D 分割网络.我的模型是用 Keras (Python) 实现的,这是一个典型的 U-Net 模型。模型,总结如下, Model: "functional_3"
我正在使用 TensorFlow 2。我正在尝试优化一个函数,该函数使用经过训练的 tensorflow 模型(毒药)的损失。 @tf.function def totalloss(x): x
试图了解 keras 优化器中的 SGD 优化代码 (source code)。在 get_updates 模块中,我们有: # momentum shapes = [K.int_shape(p) f
我是一名优秀的程序员,十分优秀!