- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
在 python 中实现 Gauss Jacobi 算法时,我发现两种不同的实现需要截然不同的迭代次数才能收敛。
第一个实现是我最初想出的
import numpy as np
def GaussJacobi(A, b, x, x_solution, tol):
k = 0
N = A.shape[0]
D = np.diag(A)
R = A-np.diagflat(D);
while(checkTol(tol, x, x_solution)):
x_new = np.zeros(N, dtype=np.double) #x(k+1)
for i in range(N):
aii = D[i]
bi = b[i]
s = np.dot(R[i], x)
x_n[i] = (1/aii)*(bi - s)
x = x_new
k+=1
print('x(%d) =' % k, x)
return k
第二种实现基于this article.
def GaussJacobi(A, b, x, x_solution, tol):
k = 0
N = A.shape[0]
D = np.diag(A)
R = A-np.diagflat(D);
while(checkTol(tol, x, x_solution)):
for i in range(N):
x = (b - np.dot(R, x)) / D
k+=1
print('x(%d) =' % k, x)
return k
解决下列问题时
A = [ 4, -1, 0, -1, 0, 0]
[-1, 4, -1, 0, -1, 0]
[ 0, -1, 4, 0, 0, -1]
[-1, 0, 0, 4, -1, 0]
[0, -1, 0, -1, 4, -1]
[0, 0, -1, 0, -1, 4]
b = [2, 1, 2, 2, 1, 2]
x_solution =[1, 1, 1, 1, 1, 1]
x0 = [0, 0, 0, 0, 0, 0]
第一个实现需要 37 次迭代才能收敛,误差为 1e-8,而第二个实现只需要 7 次迭代即可收敛。
是什么让第二个实现比第一个实现快得多?
编辑:
我已经实现了另外两种方法,Gauss-Seidel 方法和 SOR 方法。这两种方法的实现方式与我最初的慢速 Gauss-Jacobi 方法类似。
我对 100 个 NxN 对角占优矩阵进行了随机测试,每个 N = 4...20 以获得收敛前的平均迭代次数。
N Gauss-Jacobi Gauss-Jacobi Fast Gauss Seidel SOR -- w=1.5
--- -------------- ------------------- -------------- --------------
4 40.96 17.04 40.6804 40.9204
5 49.11 17.25 48.7489 48.9389
6 56.11 16.04 55.6789 55.9089
7 70.26 18 69.6774 70.0074
8 76.4 16.54 75.756 76.236
9 83.56 17.03 82.8344 83.1044
10 92.33 16.24 91.5267 91.7267
11 98.02 16.59 97.1598 97.4598
12 107.39 15.98 106.436 106.756
13 123.48 17.75 122.375 122.655
14 125.07 16.04 123.949 124.239
15 132.41 16.68 131.206 131.496
16 145 16.31 143.67 143.91
17 149.66 16.75 148.283 148.493
18 154.21 15.58 152.788 153.078
19 163.18 16.51 161.668 161.918
20 167.58 15.38 166.014 166.254
更快的 Gauss Jacobi 实现不仅明显快于所有其他实现,而且它似乎不像其他方法那样随着数组大小的增加而增加。
在检查正在运行的方法时,似乎快速方法在其第一次迭代时做出了非常好的猜测。
我的猜测是它必须用 np.dot
函数做一些事情,但我不明白为什么这与独立地做每个点积的工作方式不同。
最佳答案
您的第二个实现在每次 k
增量时执行 N
实际 次迭代,因为对 x
的赋值已经覆盖整个向量。它的“优势”因此随着问题的大小而增加。
关于python - 为什么 Gauss-Jacobi 方法的特定 numpy 实现会显着减少迭代次数?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61529476/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!