- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
努力使子类损失函数在 Tensorflow (2.2.0) 中工作。
最初尝试了此代码(我知道它对其他人有用 - 请参阅 https://github.com/keras-team/keras/issues/2115#issuecomment-530762739 ):
import tensorflow.keras.backend as K
from tensorflow.keras.losses import CategoricalCrossentropy
class WeightedCategoricalCrossentropy(CategoricalCrossentropy):
def __init__(self, cost_mat, name='weighted_categorical_crossentropy', **kwargs):
assert(cost_mat.ndim == 2)
assert(cost_mat.shape[0] == cost_mat.shape[1])
super().__init__(name=name, **kwargs)
self.cost_mat = K.cast_to_floatx(cost_mat)
def __call__(self, y_true, y_pred):
return super().__call__(
y_true=y_true,
y_pred=y_pred,
sample_weight=get_sample_weights(y_true, y_pred, self.cost_mat),
)
def get_sample_weights(y_true, y_pred, cost_m):
num_classes = len(cost_m)
y_pred.shape.assert_has_rank(2)
y_pred.shape[1].assert_is_compatible_with(num_classes)
y_pred.shape.assert_is_compatible_with(y_true.shape)
y_pred = K.one_hot(K.argmax(y_pred), num_classes)
y_true_nk1 = K.expand_dims(y_true, 2)
y_pred_n1k = K.expand_dims(y_pred, 1)
cost_m_1kk = K.expand_dims(cost_m, 0)
sample_weights_nkk = cost_m_1kk * y_true_nk1 * y_pred_n1k
sample_weights_n = K.sum(sample_weights_nkk, axis=[1, 2])
return sample_weights_n
model.compile(optimizer='adam',
loss={'simple_Class': 'categorical_crossentropy',
'soundClass': 'binary_crossentropy',
'auxiliary_soundClass':'binary_crossentropy',
'auxiliary_class_training': WeightedCategoricalCrossentropy(cost_matrix),
'class_training':WeightedCategoricalCrossentropy(cost_matrix)
},
loss_weights={'simple_Class': 1.0,
'soundClass': 1.0,
'auxiliary_soundClass':0.7,
'auxiliary_class_training': 0.7,
'class_training':0.4})
cost_matrix
是一个二维 numpy 数组)。训练槽
model.fit()
与
batch_size=512
.
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-21-3428d6d8967a> in <module>()
82 'class_training': class_lables_test}),
83
---> 84 epochs=nb_epoch, batch_size=batch_size, initial_epoch=initial_epoch, verbose=0, shuffle=True, callbacks=[se, tb, cm, mc, es, rs])
85
86 #model.save(save_version_dir,save_format='tf')
10 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
64 def _method_wrapper(self, *args, **kwargs):
65 if not self._in_multi_worker_mode(): # pylint: disable=protected-access
---> 66 return method(self, *args, **kwargs)
67
68 # Running inside `run_distribute_coordinator` already.
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
846 batch_size=batch_size):
847 callbacks.on_train_batch_begin(step)
--> 848 tmp_logs = train_function(iterator)
849 # Catch OutOfRangeError for Datasets of unknown size.
850 # This blocks until the batch has finished executing.
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
578 xla_context.Exit()
579 else:
--> 580 result = self._call(*args, **kwds)
581
582 if tracing_count == self._get_tracing_count():
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
625 # This is the first call of __call__, so we have to initialize.
626 initializers = []
--> 627 self._initialize(args, kwds, add_initializers_to=initializers)
628 finally:
629 # At this point we know that the initialization is complete (or less
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
504 self._concrete_stateful_fn = (
505 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
--> 506 *args, **kwds))
507
508 def invalid_creator_scope(*unused_args, **unused_kwds):
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
2444 args, kwargs = None, None
2445 with self._lock:
-> 2446 graph_function, _, _ = self._maybe_define_function(args, kwargs)
2447 return graph_function
2448
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
2775
2776 self._function_cache.missed.add(call_context_key)
-> 2777 graph_function = self._create_graph_function(args, kwargs)
2778 self._function_cache.primary[cache_key] = graph_function
2779 return graph_function, args, kwargs
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
2665 arg_names=arg_names,
2666 override_flat_arg_shapes=override_flat_arg_shapes,
-> 2667 capture_by_value=self._capture_by_value),
2668 self._function_attributes,
2669 # Tell the ConcreteFunction to clean up its graph once it goes out of
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
979 _, original_func = tf_decorator.unwrap(python_func)
980
--> 981 func_outputs = python_func(*func_args, **func_kwargs)
982
983 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
439 # __wrapped__ allows AutoGraph to swap in a converted function. We give
440 # the function a weak reference to itself to avoid a reference cycle.
--> 441 return weak_wrapped_fn().__wrapped__(*args, **kwds)
442 weak_wrapped_fn = weakref.ref(wrapped_fn)
443
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
966 except Exception as e: # pylint:disable=broad-except
967 if hasattr(e, "ag_error_metadata"):
--> 968 raise e.ag_error_metadata.to_exception(e)
969 else:
970 raise
TypeError: in user code:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:571 train_function *
outputs = self.distribute_strategy.run(
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:951 run **
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2290 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2649 _call_for_each_replica
return fn(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:533 train_step **
y, y_pred, sample_weight, regularization_losses=self.losses)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/compile_utils.py:205 __call__
loss_value = loss_obj(y_t, y_p, sample_weight=sw)
TypeError: __call__() got an unexpected keyword argument 'sample_weight'
__call__()
时,此问题已解决。魔术方法与
call()
并手动实现一些底层逻辑。这有效,用法相同。
__call__
方法改为:
def call(self, y_true, y_pred):
return super().call(y_true, y_pred) * get_sample_weights(y_true, y_pred, self.cost_mat)
y_true
上计算分类交叉熵损失和
y_pred
然后直接乘以我们的权重矩阵,而不是传递
y_true
,
y_pred
和
self-cost_mat
到分类交叉熵
call
方法并使用继承方法自己的逻辑将损失乘以权重。这不是一个大问题,因为代码确实有效 - 但我不明白为什么我无法使用继承类自己的
__call__
正确实现(根据原始代码)。
y_pred.shape[1].assert_is_compatible_with(num_classes)
至
assert(y_pred.shape[1] == num_classes)
- 这是因为
y_pred.shape[1]
正在返回
int
.我不知道为什么,因为,检查
y_pred
,当然是
tf.Tensor
,等等,
.shape[1]
应该返回
tf.TesnorShape
对象,在其上
.assert_is_compatible_with()
可以调用。
model.save(save_format='tf')
启用整个模型 + 优化器状态保存.其中一些功能很难实现:我必须实现对 NumPy 数组的显式转换(参见
__init__
方法的第一行)。
class WeightedCategoricalCrossentropy(tensorflow.keras.losses.CategoricalCrossentropy):
def __init__(self, cost_mat, name='weighted_categorical_crossentropy', **kwargs):
cost_mat = np.array(cost_mat)
## when loading from config, self.cost_mat returns as a list, rather than an numpy array.
## Adding the above line fixes this issue, enabling .ndim to call sucessfully.
## However, this is probably not the best implementation
assert(cost_mat.ndim == 2)
assert(cost_mat.shape[0] == cost_mat.shape[1])
super().__init__(name=name, **kwargs)
self.cost_mat = K.cast_to_floatx(cost_mat)
def call(self, y_true, y_pred):
return super().call(y_true, y_pred) * get_sample_weights(y_true, y_pred, self.cost_mat)
def get_config(self):
config = super().get_config().copy()
# Calling .update on the line above, during assignment, causes an error with config becoming None-type.
config.update({'cost_mat': (self.cost_mat)})
return config
@classmethod
def from_config(cls, config):
# something goes wrong here and changes self.cost_mat to a list variable.
# See above for temporary fix
return cls(**config)
def get_sample_weights(y_true, y_pred, cost_m):
num_classes = len(cost_m)
y_pred.shape.assert_has_rank(2)
assert(y_pred.shape[1] == num_classes)
y_pred.shape.assert_is_compatible_with(y_true.shape)
y_pred = K.one_hot(K.argmax(y_pred), num_classes)
y_true_nk1 = K.expand_dims(y_true, 2)
y_pred_n1k = K.expand_dims(y_pred, 1)
cost_m_1kk = K.expand_dims(cost_m, 0)
sample_weights_nkk = cost_m_1kk * y_true_nk1 * y_pred_n1k
sample_weights_n = K.sum(sample_weights_nkk, axis=[1, 2])
return sample_weights_n
tf.keras.losses.WeightedCategoricalCrossentropy = WeightedCategoricalCrossentropy
model.save(save_version_dir,save_format='tf')
model = tf.keras.models.load_model(
save_version_dir,
compile=True,
custom_objects={
'WeightedCategoricalCrossentropy': WeightedCategoricalCrossentropy(cost_matrix)
}
)
最佳答案
根据评论;这里的问题是 TensorFlow 现在强制继承原始方法签名。
以下已在玩具问题上进行了测试(通过比较 cost_matrix 中的相等权重与将除单个类别之外的所有类别加权为无)并且有效:
class WeightedCategoricalCrossentropy(tf.keras.losses.CategoricalCrossentropy):
def __init__(self, cost_mat, name='weighted_categorical_crossentropy', **kwargs):
cost_mat = np.array(cost_mat)
## when loading from config, self.cost_mat returns as a list, rather than an numpy array.
## Adding the above line fixes this issue, enabling .ndim to call sucessfully.
## However, this is probably not the best implementation
assert(cost_mat.ndim == 2)
assert(cost_mat.shape[0] == cost_mat.shape[1])
super().__init__(name=name, **kwargs)
self.cost_mat = K.cast_to_floatx(cost_mat)
def __call__(self, y_true, y_pred, sample_weight=None):
assert sample_weight is None, "should only be derived from the cost matrix"
return super().__call__(
y_true=y_true,
y_pred=y_pred,
sample_weight=get_sample_weights(y_true, y_pred, self.cost_mat),
)
def get_config(self):
config = super().get_config().copy()
# Calling .update on the line above, during assignment, causes an error with config becoming None-type.
config.update({'cost_mat': (self.cost_mat)})
return config
@classmethod
def from_config(cls, config):
# something goes wrong here and changes self.cost_mat to a list variable.
# See above for temporary fix
return cls(**config)
def get_sample_weights(y_true, y_pred, cost_m):
num_classes = len(cost_m)
y_pred.shape.assert_has_rank(2)
assert(y_pred.shape[1] == num_classes)
y_pred.shape.assert_is_compatible_with(y_true.shape)
y_pred = K.one_hot(K.argmax(y_pred), num_classes)
y_true_nk1 = K.expand_dims(y_true, 2)
y_pred_n1k = K.expand_dims(y_pred, 1)
cost_m_1kk = K.expand_dims(cost_m, 0)
sample_weights_nkk = cost_m_1kk * y_true_nk1 * y_pred_n1k
sample_weights_n = K.sum(sample_weights_nkk, axis=[1, 2])
return sample_weights_n
# Register the loss in the Keras namespace to enable loading of the custom object.
tf.keras.losses.WeightedCategoricalCrossentropy = WeightedCategoricalCrossentropy
cost_matrix
是一个二维 NumPy 数组,例如:
[
[ Weight Category 1 predicted as Category 1,
Weight Category 1 predicted as Category 2,
Weight Category 1 predicted as Category 3 ]
[ Weight Category 2 predicted as Category 1,
...,
... ]
[ ...,
...,
Weight Category 3 predicted as Category 3 ]
]
model.compile(
optimizer='adam',
loss=WeightedCategoricalCrossentropy(cost_matrix)
)
model.save(save_version_dir,save_format='tf')
model = tf.keras.models.load_model(
save_version_dir,
compile=True,
custom_objects={
'WeightedCategoricalCrossentropy': WeightedCategoricalCrossentropy(cost_matrix)
}
)
关于tensorflow2.0 - 对 tensorflow 损失类 (categorical_crossentropy) 进行子分类以创建加权损失函数时出现意外的关键字参数 'sample_weight',我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61919774/
SQLite、Content provider 和 Shared Preference 之间的所有已知区别。 但我想知道什么时候需要根据情况使用 SQLite 或 Content Provider 或
警告:我正在使用一个我无法完全控制的后端,所以我正在努力解决 Backbone 中的一些注意事项,这些注意事项可能在其他地方更好地解决......不幸的是,我别无选择,只能在这里处理它们! 所以,我的
我一整天都在挣扎。我的预输入搜索表达式与远程 json 数据完美配合。但是当我尝试使用相同的 json 数据作为预取数据时,建议为空。点击第一个标志后,我收到预定义消息“无法找到任何内容...”,结果
我正在制作一个模拟 NHL 选秀彩票的程序,其中屏幕右侧应该有一个 JTextField,并且在左侧绘制弹跳的选秀球。我创建了一个名为 Ball 的类,它实现了 Runnable,并在我的主 Draf
这个问题已经有答案了: How can I calculate a time span in Java and format the output? (18 个回答) 已关闭 9 年前。 这是我的代码
我有一个 ASP.NET Web API 应用程序在我的本地 IIS 实例上运行。 Web 应用程序配置有 CORS。我调用的 Web API 方法类似于: [POST("/API/{foo}/{ba
我将用户输入的时间和日期作为: DatePicker dp = (DatePicker) findViewById(R.id.datePicker); TimePicker tp = (TimePic
放宽“邻居”的标准是否足够,或者是否有其他标准行动可以采取? 最佳答案 如果所有相邻解决方案都是 Tabu,则听起来您的 Tabu 列表的大小太长或您的释放策略太严格。一个好的 Tabu 列表长度是
我正在阅读来自 cppreference 的代码示例: #include #include #include #include template void print_queue(T& q)
我快疯了,我试图理解工具提示的行为,但没有成功。 1. 第一个问题是当我尝试通过插件(按钮 1)在点击事件中使用它时 -> 如果您转到 Fiddle,您会在“内容”内看到该函数' 每次点击都会调用该属
我在功能组件中有以下代码: const [ folder, setFolder ] = useState([]); const folderData = useContext(FolderContex
我在使用预签名网址和 AFNetworking 3.0 从 S3 获取图像时遇到问题。我可以使用 NSMutableURLRequest 和 NSURLSession 获取图像,但是当我使用 AFHT
我正在使用 Oracle ojdbc 12 和 Java 8 处理 Oracle UCP 管理器的问题。当 UCP 池启动失败时,我希望关闭它创建的连接。 当池初始化期间遇到 ORA-02391:超过
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 9 年前。 Improve
引用这个plunker: https://plnkr.co/edit/GWsbdDWVvBYNMqyxzlLY?p=preview 我在 styles.css 文件和 src/app.ts 文件中指定
为什么我的条形这么细?我尝试将宽度设置为 1,它们变得非常厚。我不知道还能尝试什么。默认厚度为 0.8,这是应该的样子吗? import matplotlib.pyplot as plt import
当我编写时,查询按预期执行: SELECT id, day2.count - day1.count AS diff FROM day1 NATURAL JOIN day2; 但我真正想要的是右连接。当
我有以下时间数据: 0 08/01/16 13:07:46,335437 1 18/02/16 08:40:40,565575 2 14/01/16 22:2
一些背景知识 -我的 NodeJS 服务器在端口 3001 上运行,我的 React 应用程序在端口 3000 上运行。我在 React 应用程序 package.json 中设置了一个代理来代理对端
我面临着一个愚蠢的问题。我试图在我的 Angular 应用程序中延迟加载我的图像,我已经尝试过这个2: 但是他们都设置了 src attr 而不是 data-src,我在这里遗漏了什么吗?保留 d
我是一名优秀的程序员,十分优秀!