gpt4 book ai didi

idris - Idris 中的简单句法等式

转载 作者:行者123 更新时间:2023-12-04 04:04:47 25 4
gpt4 key购买 nike

是否有一种简单的方法可以为数据类型编写相等 ( DecEq ) 实例?例如,我希望下面的 DecEq 中有 O(n) 行声明,其中 ?p很简单:

data Foo = A | B | C | D

instance [syntactic] DecEq Foo where
decEq A A = Yes Refl
decEq B B = Yes Refl
decEq C C = Yes Refl
decEq D D = Yes Refl
decEq _ _ = No ?p

最佳答案

大卫·克里斯蒂安森(David Christiansen)正在做一些总体上自动化的事情,他基本上已经完成了。可以在 his GitHub repository 中找到.同时,在这种情况下,这里有一种方法可以将您从 O(n^2) 案例转换为 O(n) 案例。首先,一些预备知识。如果您有可判定相等的东西,并且您有从您选择的类型到该类型的注入(inject),那么您可以为该类型制定决策过程:

IsInjection : (a -> b) -> Type
IsInjection {a} f = (x,y : a) -> f x = f y -> x = y

decEqInj : DecEq d => (tToDec : t -> d) ->
(isInj : IsInjection tToDec) ->
(p, q : t) -> Dec (p = q)
decEqInj tToDec isInj p q with (decEq (tToDec p) (tToDec q))
| (Yes prf) = Yes (isInj p q prf)
| (No contra) = No (\pq => contra (cong pq))

不幸的是,直接证明你的函数是一个注入(inject)会让你回到 O(n^2) 的情况,但通常情况下,任何具有撤回的函数都是单射的:
retrInj : (f : d -> t) -> (g : t -> d) ->
((x : t) -> f (g x) = x) ->
IsInjection g
retrInj f g prf x y gxgy =
let fgxfgy = cong {f} gxgy
foo = sym $ prf x
bar = prf y
in trans foo (trans fgxfgy bar)

因此,如果您有一个从您选择的类型到具有可判定相等性和可撤销的函数的函数,那么您的类型具有可判定相等性:
decEqRet : DecEq d => (decToT : d -> t) ->
(tToDec : t -> d) ->
(isRet : (x : t) -> decToT (tToDec x) = x) ->
(p, q : t) -> Dec (p = q)
decEqRet decToT tToDec isRet p q =
decEqInj tToDec (retrInj decToT tToDec isRet) p q

最后,您可以为您选择的内容编写案例:
data Foo = A | B | C | D

natToFoo : Nat -> Foo
natToFoo Z = A
natToFoo (S Z) = B
natToFoo (S (S Z)) = C
natToFoo _ = D

fooToNat : Foo -> Nat
fooToNat A = 0
fooToNat B = 1
fooToNat C = 2
fooToNat D = 3

fooNatFoo : (x : Foo) -> natToFoo (fooToNat x) = x
fooNatFoo A = Refl
fooNatFoo B = Refl
fooNatFoo C = Refl
fooNatFoo D = Refl

instance DecEq Foo where
decEq x y = decEqRet natToFoo fooToNat fooNatFoo x y

请注意,虽然 natToFoo函数有一些大的模式,那里并没有真正发生什么。应该可以通过嵌套它们来使它们变小,尽管这可能很难看。

概括:起初我认为这仅适用于特殊情况,但我现在认为它可能比这要好一些。特别是,如果您有一个代数数据类型持有可判定相等的类型,您应该能够将其转换为嵌套的 Either嵌套的 Pair ,这会让你到达那里。例如(使用 Maybe 缩短 Either (Bool, Nat) () ):
data Fish = Cod Int | Trout Bool Nat | Flounder

watToFish : Either Int (Maybe (Bool, Nat)) -> Fish
watToFish (Left x) = Cod x
watToFish (Right Nothing) = Flounder
watToFish (Right (Just (a, b))) = Trout a b

fishToWat : Fish -> Either Int (Maybe (Bool, Nat))
fishToWat (Cod x) = Left x
fishToWat (Trout x k) = Right (Just (x, k))
fishToWat Flounder = Right Nothing

fishWatFish : (x : Fish) -> watToFish (fishToWat x) = x
fishWatFish (Cod x) = Refl
fishWatFish (Trout x k) = Refl
fishWatFish Flounder = Refl

instance DecEq Fish where
decEq x y = decEqRet watToFish fishToWat fishWatFish x y

关于idris - Idris 中的简单句法等式,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30314720/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com