- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
系统信息
问题
我从这个 page 下载了一个 FaceNet 的 tensorflow 模型,并且我正在尝试将其从 .pb 转换为 .onnx 文件,但是它引发了以下错误:
复制
root@xesk-VirtualBox:/home/xesk/Desktop# python -m tf2onnx.convert --saved-model home/xesk/Desktop/2s/20180402-114759/20180402-114759.pb --output model.onnx
2020-08-03 20:18:05.081538: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'libcudart.so.10.1'; dlerror: libcudart.so.10.1: cannot open shared object file: No such file or directory
2020-08-03 20:18:05.081680: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
2020-08-03 20:18:07,431 - WARNING - '--tag' not specified for saved_model. Using --tag serve
Traceback (most recent call last):
File "/usr/lib/python3.8/runpy.py", line 193, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/usr/lib/python3.8/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/usr/local/lib/python3.8/dist-packages/tf2onnx/convert.py", line 171, in
main()
File "/usr/local/lib/python3.8/dist-packages/tf2onnx/convert.py", line 131, in main
graph_def, inputs, outputs = tf_loader.from_saved_model(
File "/usr/local/lib/python3.8/dist-packages/tf2onnx/tf_loader.py", line 288, in from_saved_model
_from_saved_model_v2(model_path, input_names, output_names, tag, signatures, concrete_function)
File "/usr/local/lib/python3.8/dist-packages/tf2onnx/tf_loader.py", line 247, in _from_saved_model_v2
imported = tf.saved_model.load(model_path, tags=tag) # pylint: disable=no-value-for-parameter
File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/saved_model/load.py", line 603, in load
return load_internal(export_dir, tags, options)
File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/saved_model/load.py", line 614, in load_internal
loader_impl.parse_saved_model_with_debug_info(export_dir))
File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/saved_model/loader_impl.py", line 56, in parse_saved_model_with_debug_info
saved_model = _parse_saved_model(export_dir)
File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/saved_model/loader_impl.py", line 110, in parse_saved_model
raise IOError("SavedModel file does not exist at: %s/{%s|%s}" %
OSError: SavedModel file does not exist at: home/xesk/Desktop/2s/20180402-114759/20180402-114759.pb/{saved_model.pbtxt|saved_model.pb}
其他上下文
我没有运行任何 CUDA 或类似的东西,只有 CPU。下载的模型是20180402-114759 .这是我第一次使用这些工具,而且我在这个 AI 世界中还是个初学者,所以我可能遗漏了一些明显的东西。当然,我多次检查了路径和命令语法。可能与我下载的文件格式有关?
编辑
根据 Venkatesh Wadawadagi 的回答,我选择选项 1。更改 .meta 文件的名称解决了脚本无法识别的问题。
脚本或多或少正确运行,并完成创建 export_dir 目录,其中包含 export_dir > 0 > variables 子文件夹。然而,它们是空的。
控制台输出是这样的:
xesk@xesk:~/Desktop/UP2S/ACROMEGALLY/20180402-114759$ python3 ./pb2sm
2020-08-10 16:02:26.128846: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory
2020-08-10 16:02:26.129114: E tensorflow/stream_executor/cuda/cuda_driver.cc:318] failed call to cuInit: UNKNOWN ERROR (303)
2020-08-10 16:02:26.129137: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (xesk): /proc/driver/nvidia/version does not exist
2020-08-10 16:02:26.129501: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2020-08-10 16:02:26.139076: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2592000000 Hz
2020-08-10 16:02:26.139506: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x44018d0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-08-10 16:02:26.139520: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow_core/python/training/queue_runner_impl.py:391: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
2020-08-10 16:02:32.681265: W tensorflow/core/framework/cpu_allocator_impl.cc:81] Allocation of 17676288 exceeds 10% of system memory.
Traceback (most recent call last):
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/client/session.py", line 1365, in _do_call
return fn(*args)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/client/session.py", line 1350, in _run_fn
target_list, run_metadata)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/client/session.py", line 1443, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized value InceptionResnetV1/Block8/Branch_0/Conv2d_1x1/BatchNorm/beta/Adam
[[{{node save/SaveV2_1}}]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "./pb2sm", line 17, in <module>
strip_default_attrs=True)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/util/deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/saved_model/builder_impl.py", line 595, in add_meta_graph_and_variables
saver.save(sess, variables_path, write_meta_graph=False, write_state=False)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/training/saver.py", line 1193, in save
raise exc
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/training/saver.py", line 1176, in save
{self.saver_def.filename_tensor_name: checkpoint_file})
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/client/session.py", line 956, in run
run_metadata_ptr)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/client/session.py", line 1180, in _run
feed_dict_tensor, options, run_metadata)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/client/session.py", line 1359, in _do_run
run_metadata)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/client/session.py", line 1384, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized value InceptionResnetV1/Block8/Branch_0/Conv2d_1x1/BatchNorm/beta/Adam
[[node save/SaveV2_1 (defined at /usr/local/lib/python3.7/dist-packages/tensorflow_core/python/framework/ops.py:1748) ]]
Original stack trace for 'save/SaveV2_1':
File "./pb2sm", line 17, in <module>
strip_default_attrs=True)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/util/deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/saved_model/builder_impl.py", line 589, in add_meta_graph_and_variables
saver = self._maybe_create_saver(saver)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/saved_model/builder_impl.py", line 227, in _maybe_create_saver
allow_empty=True)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/training/saver.py", line 828, in __init__
self.build()
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/training/saver.py", line 840, in build
self._build(self._filename, build_save=True, build_restore=True)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/training/saver.py", line 878, in _build
build_restore=build_restore)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/training/saver.py", line 499, in _build_internal
save_tensor = self._AddShardedSaveOps(filename_tensor, per_device)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/training/saver.py", line 291, in _AddShardedSaveOps
return self._AddShardedSaveOpsForV2(filename_tensor, per_device)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/training/saver.py", line 265, in _AddShardedSaveOpsForV2
sharded_saves.append(self._AddSaveOps(sharded_filename, saveables))
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/training/saver.py", line 206, in _AddSaveOps
save = self.save_op(filename_tensor, saveables)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/training/saver.py", line 122, in save_op
tensors)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/ops/gen_io_ops.py", line 1946, in save_v2
name=name)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/framework/op_def_library.py", line 794, in _apply_op_helper
op_def=op_def)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/util/deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/framework/ops.py", line 3357, in create_op
attrs, op_def, compute_device)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/framework/ops.py", line 3426, in _create_op_internal
op_def=op_def)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/framework/ops.py", line 1748, in __init__
self._traceback = tf_stack.extract_stack()
我是否可能缺少一些要安装的库?似乎与某些 CUDA 实现有关,但我没有。可能吗?
最佳答案
您正在使用的命令:
python -m tf2onnx.convert --saved-model home/xesk/Desktop/2s/20180402-114759/20180402-114759.pb --output model.onnx
请注意 Facenet您正在使用的经过训练的模型只有卡住图( .pb
文件)和检查点( .ckpt
)并且没有 saved-model
您的命令正在查找。
所以基本上您是将路径传递给 .pb
卡住图的文件,不同于.pb
SavedModel 文件(您没有)。保存的模型将具有 variables
文件夹以及 saved_model.pb
文件。
这就是错误的原因:
OSError: SavedModel file does not exist
阅读有关 SavedModel 的更多信息 here .
要继续进行 ONNX 转换,您有两个选择:
使用以下 code为此:
import os
import tensorflow as tf
trained_checkpoint_prefix = 'model-20180402-114759.ckpt-275'
export_dir = os.path.join('export_dir', '0')
graph = tf.Graph()
with tf.compat.v1.Session(graph=graph) as sess:
# Restore from checkpoint
loader = tf.compat.v1.train.import_meta_graph(trained_checkpoint_prefix + '.meta')
loader.restore(sess, trained_checkpoint_prefix)
# Export checkpoint to SavedModel
builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(export_dir)
builder.add_meta_graph_and_variables(sess,
[tf.saved_model.TRAINING, tf.saved_model.SERVING],
strip_default_attrs=True)
builder.save()
注意: .data
, .index
和 .meta
应该有相同的前缀然后这个代码将工作。所以重命名 .meta
文件。
mv model-20180402-114759.meta model-20180402-114759.ckpt-275.meta
ckpt
文件或 frozen-graph.pb
用于onnx转换来自检查点格式:
python -m tf2onnx.convert --checkpoint tensorflow-model-meta-file-path --output model.onnx --inputs input0:0,input1:0 --outputs output0:0
来自 graphdef/frozen-graph 格式:
python -m tf2onnx.convert --graphdef tensorflow-model-graphdef-file --output model.onnx --inputs input0:0,input1:0 --outputs output0:0
如果您的 TensorFlow 模型的格式不是 saved model
,那么你需要提供 inputs
和 outputs
模型图。
来自 this :
If your model is in checkpoint or graphdef format and you do not knowthe input and output nodes of the model, you can use thesummarize_graph TensorFlow utility. The summarize_graph tool doesneed to be downloaded and built from source. If you have the option ofgoing to your model provider and obtaining the model in saved modelformat, then we recommend doing so.
关于python - 将 FaceNet 模型转换为 ONNX 格式时出错,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63235880/
有没有办法使用 Clojure format(基于 java.util.Formatter)或 cl-format(基于 Common Lisp 的format) 以编程方式设置空格填充?如果您事先知
我正在尝试创建一个用户实体以及数据/文件(pdf格式)。上传并保存到数据库很好,但是当我让用户进入 postman 时尝试发送获取请求方法,然后在数据字段中显示一些糟糕的数据,而且我无法在数据库中看到
我必须将值为 {"STX","ETX"} 的普通字符串数组转换为十六进制值,并且我应该根据 http://www.asciitable.com/ 得到 {2,3} . 最佳答案 听起来你想要一个 Ma
我想格式化我的代码,但不确定哪种格式类型最适合我的项目需要。 我发现仅对于 dart 和 flutter 项目(我都有),有不止一个选项可用于格式化编程语言/框架中预先构建的代码。 Dart : da
我已经尝试了多个代码,例如这样 Sub DateFixer() Application.ScreenUpdating = False Application.Calculation =
SolrQuery query = new SolrQuery(); query.setQuery("*:*"); query.add("wt","csv"); server.query(query)
我有一个包含多个字符串的数据库,我从查询中获取了这些记录,并且我在 QString 中收到了这种格式的数据: "Mon, 13 Nov 2017 09:48:45 +0000" 所以,我需要根据文化来
我有一个 Delphi 2007 DBGrid,我想让用户以更新的 Excel 格式 (OOXML) 保存它,但我的标准是用户不需要安装 Excel。有没有人知道任何已经这样做的组件?是的,我已经搜索
我正在我们的普通 html 站点旁边创建一个移动站点。使用 rails 3.1。移动站点在子域 m.site.com 中访问。 我已经定义了移动格式(Mime::Type.register_alias
我正在尝试使用 xmlstarlet 格式化 xml 文件,但我不想创建新的 xml 文件。 我试过了 xmlstarlet fo --inplace --indent-tab --omit-decl
我在 A 列中有一个带有文本的电子表格。 例如 A1=MY TEXT1 A2=MY TEXT2 A3=MY TEXT3 A4=MY TEXT4 A5=MY TEXT5 我想在文本的前后添加撇号 结果是
我想做一些源代码转换(自动导入列表清理),我想保留注释和格式。我听说过一些关于解析器这样做的事情,我认为是 ghc 解析器。 看起来我可以通过从文件中提取内容来使用 hs-src-exts Langu
我在 Excel 中工作,我想根据另一张表中的列表找出一张表中是否有匹配项。 我已将值粘贴到列表中,并希望从另一张表中返回它们的相应值。包含字母和数字的单元格可以正常工作(例如:D5765000),但
我有一个 DurationField在我的模型中定义为 day0 = models.DurationField('Duration for Monday', default=datetime.time
我正在为我的应用程序开发 WMI 查询。它需要为给定的 VID/PID 找到分配的虚拟 COM 端口。使用 WMI Code Creator 我发现...... 命名空间:root\CIMV2 类:W
我试图弄清楚如何使用 NSTextList,但除了 this SO question 之外,在网上几乎没有找到有用的信息。和 the comment in this blog . 使用这个我已经能够创
我要查询all_objects表在哪里last_ddl_time='01 jan 2010'但它拒绝日期格式... 任何机构给我查询的确切格式? 最佳答案 正如 AKF 所说,您应该使用 Trunc除
我试图在我的应用程序中实现聊天功能。我使用了 2 个 JEditorPane。一个用于保存聊天记录,另一个用于将聊天发送到前一个 JEditorPane。 JEditorPane 是 text/h
我在大学里修了一个编译器类(class),内容非常丰富,很有趣,尽管也很多工作。既然给了我们要实现的语言规范,所以我学不到的一件事就是语言设计。我现在正在考虑创建一种有趣的简单玩具语言,以便我可以玩耍
Closed. This question does not meet Stack Overflow guidelines。它当前不接受答案。 想改善这个问题吗?更新问题,以便将其作为on-topic
我是一名优秀的程序员,十分优秀!