- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
问题本身与语言无关。我将使用 python 作为我的示例,主要是因为我认为它很好地证明了这一点。
我有一个形状为 (n1, n2, ..., nN)
的 N 维数组,它在内存中是连续的(c 顺序)并填充有数字。对于每个维度本身,数字按升序排列。这种数组的二维示例是:
>>> import numpy as np
>>> n1 = np.arange(5)[:, None]
>>> n2 = np.arange(7)[None, :]
>>> n1+n2
array([[ 0, 1, 2, 3, 4, 5, 6],
[ 1, 2, 3, 4, 5, 6, 7],
[ 2, 3, 4, 5, 6, 7, 8],
[ 3, 4, 5, 6, 7, 8, 9],
[ 4, 5, 6, 7, 8, 9, 10]])
在这种情况下,每一行中的值都是升序的,每一列中的值也是升序的。一维示例数组是
>>> n1 = np.arange(10)
>>> n1*n1
array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81])
我想获得一个包含索引的列表/数组,这些索引将按升序对 nD 数组的扁平版本进行排序。我所说的展平数组是指我将 nD 数组解释为等效大小的一维数组。排序不必保留顺序,即索引相同数字的索引顺序无关紧要。例如
>>> n1 = np.arange(5)[:, None]
>>> n2 = np.arange(7)[None, :]
>>> arr = n1*n2
>>> arr
array([[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 1, 2, 3, 4, 5, 6],
[ 0, 2, 4, 6, 8, 10, 12],
[ 0, 3, 6, 9, 12, 15, 18],
[ 0, 4, 8, 12, 16, 20, 24]])
>>> np.argsort(arr.ravel())
array([ 0, 28, 14, 7, 6, 21, 4, 3, 2, 1, 5, 8, 9, 15, 22, 10, 11,
29, 16, 12, 23, 17, 13, 18, 30, 24, 19, 25, 31, 20, 26, 32, 27, 33,
34], dtype=int64)
扁平化数组的标准排序可以做到这一点;但是,它没有利用数组已经部分排序的事实,所以我怀疑存在更有效的解决方案。 最有效的方法是什么?
评论询问我的用例是什么,以及我是否可以提供一些更真实的测试数据来进行基准测试。这是我遇到这个问题的方式:
Given an image and a binary mask for that image (which selects pixels), find the largest sub-image which contains only selected pixels.
在我的例子中,我对图像应用了透视变换,并希望裁剪它以便没有黑色背景,同时尽可能多地保留图像。
from skimage import data
from skimage import transform
from skimage import img_as_float
tform = transform.EuclideanTransform(
rotation=np.pi / 12.,
translation = (10, -10)
)
img = img_as_float(data.chelsea())[50:100, 150:200]
tf_img = transform.warp(img, tform.inverse)
tf_mask = transform.warp(np.ones_like(img), tform.inverse)[..., 0]
y = np.arange(tf_mask.shape[0])
x = np.arange(tf_mask.shape[1])
y1 = y[:, None, None, None]
y2 = y[None, None, :, None]
x1 = x[None, :, None, None]
x2 = x[None, None, None, :]
y_padded, x_padded = np.where(tf_mask==0.0)
y_padded = y_padded[None, None, None, None, :]
x_padded = x_padded[None, None, None, None, :]
y_inside = np.logical_and(y1[..., None] <= y_padded, y_padded<= y2[..., None])
x_inside = np.logical_and(x1[..., None] <= x_padded, x_padded<= x2[..., None])
contains_padding = np.any(np.logical_and(y_inside, x_inside), axis=-1)
# size of the sub-image
height = np.clip(y2 - y1 + 1, 0, None)
width = np.clip(x2 - x1 + 1, 0, None)
img_size = width * height
# find all largest sub-images
img_size[contains_padding] = 0
y_low, x_low, y_high, x_high = np.where(img_size == np.max(img_size))
cropped_img = tf_img[y_low[0]:y_high[0]+1, x_low[0]:x_high[0]+1]
算法效率很低;我知道。这个问题的有趣之处在于 img_size
,它是一个 (50,50,50,50)
如上所述排序的 4 维数组。目前我这样做:
img_size[contains_padding] = 0
y_low, x_low, y_high, x_high = np.where(img_size == np.max(img_size))
但使用适当的 argsort 算法(我可以提前中断)这可能会变得更好。
最佳答案
我会使用部分合并排序和分而治之的方法来做到这一点。您从前两个数组开始。
[0, 1, 2, 3, 4, 5, 6],//<- This
[ 1, 2, 3, 4, 5, 6, 7],//<- This
....
然后你可以像这样合并它们(类似 Java 的语法):
List<Integer> merged=new ArrayList<>();
List<Integer> firstRow=... //Same would work with arrays
List<Integer> secondRow=...
int firstCnter=0;
int secondCnter=0;
while(firstCnter<firstRow.size()||secondCnter<secondRow.size()){
if(firstCnter==firstRow.size()){ //Unconditionally add all elements from the second, if we added all the elements from the first
merged.add(secondRow.get(secondCnter++));
}else if(secondCnter==secondRow.size()){
merged.add(firstRow.get(firstCnter++));
}else{ //Add the smaller value from both lists at the current index.
int firstValue=firstRow.get(firstCnter);
int secondValue=secondRow.get(secondCnter);
merged.add(Math.min(firstValue,secondValue));
if(firstValue<=secondValue)
firstCnter++;
else
secondCnter++;
}
}
之后你可以合并接下来的两行,直到你有:
[0,1,1,2,2,3,3,4,4,5,5,6,7]
[2,3,3,4,4,5,5,6,6,7,7,8,8,9]
[4,5,6,7,8,9,10] //Not merged.
继续合并。
[0,1,1,2,2,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,7,7,8,8,9]
[4,5,6,7,8,9,10]
之后,最后的合并:
[0,1,1,2,2,2,3,3,3,4,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,8,8,8,9,9,10]
我不知道时间复杂度,但应该是一个可行的解决方案
关于arrays - (arg) 对沿每个维度排序的扁平 nD 数组进行排序的最快方法?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63283519/
我喜欢 smartcase,也喜欢 * 和 # 搜索命令。但我更希望 * 和 # 搜索命令区分大小写,而/和 ?搜索命令遵循 smartcase 启发式。 是否有隐藏在某个地方我还没有找到的设置?我宁
关闭。这个问题是off-topic .它目前不接受答案。 想改进这个问题? Update the question所以它是on-topic对于堆栈溢出。 10年前关闭。 Improve this qu
从以下网站,我找到了执行java AD身份验证的代码。 http://java2db.com/jndi-ldap-programming/solution-to-sslhandshakeexcepti
似乎 melt 会使用 id 列和堆叠的测量变量 reshape 您的数据框,然后通过转换让您执行聚合。 ddply,从 plyr 包看起来非常相似..你给它一个数据框,几个用于分组的列变量和一个聚合
我的问题是关于 memcached。 Facebook 使用 memcached 作为其结构化数据的缓存,以减少用户的延迟。他们在 Linux 上使用 UDP 优化了 memcached 的性能。 h
在 Camel route ,我正在使用 exec 组件通过 grep 进行 curl ,但使用 ${HOSTNAME} 的 grep 无法正常工作,下面是我的 Camel 路线。请在这方面寻求帮助。
我正在尝试执行相当复杂的查询,在其中我可以排除与特定条件集匹配的项目。这是一个 super 简化的模型来解释我的困境: class Thing(models.Model) user = mod
我正在尝试执行相当复杂的查询,我可以在其中排除符合特定条件集的项目。这里有一个 super 简化的模型来解释我的困境: class Thing(models.Model) user = mod
我发现了很多嵌入/内容项目的旧方法,并且我遵循了在这里找到的最新方法(我假设):https://blog.angular-university.io/angular-ng-content/ 我正在尝试
我正在寻找如何使用 fastify-nextjs 启动 fastify-cli 的建议 我曾尝试将代码简单地添加到建议的位置,但它不起作用。 'use strict' const path = req
我正在尝试将振幅 js 与 React 和 Gatsby 集成。做 gatsby developer 时一切看起来都不错,因为它发生在浏览器中,但是当我尝试 gatsby build 时,我收到以下错
我试图避免过度执行空值检查,但同时我想在需要使代码健壮的时候进行空值检查。但有时我觉得它开始变得如此防御,因为我没有实现 API。然后我避免了一些空检查,但是当我开始单元测试时,它开始总是等待运行时异
尝试进行包含一些 NOT 的 Kibana 搜索,但获得包含 NOT 的结果,因此猜测我的语法不正确: "chocolate" AND "milk" AND NOT "cow" AND NOT "tr
我正在使用开源代码共享包在 iOS 中进行 facebook 集成,但收到错误“FT_Load_Glyph failed: glyph 65535: error 6”。我在另一台 mac 机器上尝试了
我正在尝试估计一个标准的 tobit 模型,该模型被审查为零。 变量是 因变量 : 幸福 自变量 : 城市(芝加哥,纽约), 性别(男,女), 就业(0=失业,1=就业), 工作类型(失业,蓝色,白色
我有一个像这样的项目布局 样本/ 一种/ 源/ 主要的/ java / java 资源/ .jpg 乙/ 源/ 主要的/ java / B.java 资源/ B.jpg 构建.gradle 设置.gr
如何循环遍历数组中的多个属性以及如何使用map函数将数组中的多个属性显示到网页 import React, { Component } from 'react'; import './App.css'
我有一个 JavaScript 函数,它进行 AJAX 调用以返回一些数据,该调用是在选择列表更改事件上触发的。 我尝试了多种方法来在等待时显示加载程序,因为它当前暂停了选择列表,从客户的 Angul
可能以前问过,但找不到。 我正在用以下形式写很多语句: if (bar.getFoo() != null) { this.foo = bar.getFoo(); } 我想到了三元运算符,但我认
我有一个表单,在将其发送到 PHP 之前我正在执行一些验证 JavaScript,验证后的 JavaScript 函数会发布用户在 中输入的文本。页面底部的标签;然而,此消息显示短暂,然后消失...
我是一名优秀的程序员,十分优秀!