gpt4 book ai didi

tensorflow - 用于时间序列异常检测的 Keras LSTM-VAE(变分自编码器)

转载 作者:行者123 更新时间:2023-12-04 03:55:24 27 4
gpt4 key购买 nike

我正在尝试使用 Keras 为 LSTM-VAE 建模以进行时间序列重建。
我曾经提到过https://github.com/twairball/keras_lstm_vae/blob/master/lstm_vae/vae.pyhttps://machinelearningmastery.com/lstm-autoencoders/用于创建 LSTM-VAE 架构。
我在训练网络时遇到问题,在 Eager Execution 模式下训练时出现以下错误:

  InvalidArgumentError: Incompatible shapes: [8,1] vs. [32,1] [Op:Mul]
输入形状为 (7752,30,1)这里有 30 个时间步长和 1 个特征。
型号编码器:
# encoder
latent_dim = 1
inter_dim = 32

#sample,timesteps, features
input_x = keras.layers.Input(shape= (X_train.shape[1], X_train.shape[2]))

#intermediate dimension
h = keras.layers.LSTM(inter_dim)(input_x)

#z_layer
z_mean = keras.layers.Dense(latent_dim)(h)
z_log_sigma = keras.layers.Dense(latent_dim)(h)
z = Lambda(sampling)([z_mean, z_log_sigma])
模型解码器:
# Reconstruction decoder
decoder1 = RepeatVector(X_train.shape[1])(z)
decoder1 = keras.layers.LSTM(100, activation='relu', return_sequences=True)(decoder1)
decoder1 = keras.layers.TimeDistributed(Dense(1))(decoder1)
采样功能:
batch_size = 32
def sampling(args):
z_mean, z_log_sigma = args
epsilon = K.random_normal(shape=(batch_size, latent_dim),mean=0., stddev=1.)
return z_mean + z_log_sigma * epsilon
VAE损失函数:
def vae_loss2(input_x, decoder1):
""" Calculate loss = reconstruction loss + KL loss for each data in minibatch """
# E[log P(X|z)]
recon = K.sum(K.binary_crossentropy(input_x, decoder1), axis=1)
# D_KL(Q(z|X) || P(z|X)); calculate in closed form as both dist. are Gaussian
kl = 0.5 * K.sum(K.exp(z_log_sigma) + K.square(z_mean) - 1. - z_log_sigma, axis=1)

return recon + kl
LSTM-VAE model architecture
有什么建议可以使模型正常工作吗?

最佳答案

您需要推断采样函数中的 batch_dim 并且您需要注意您的损失……您的损失函数使用前几层的输出,因此您需要注意这一点。我使用 model.add_loss(...) 来实现这个

# encoder
latent_dim = 1
inter_dim = 32
timesteps, features = 100, 1

def sampling(args):
z_mean, z_log_sigma = args
batch_size = tf.shape(z_mean)[0] # <================
epsilon = K.random_normal(shape=(batch_size, latent_dim), mean=0., stddev=1.)
return z_mean + z_log_sigma * epsilon

# timesteps, features
input_x = Input(shape= (timesteps, features))

#intermediate dimension
h = LSTM(inter_dim, activation='relu')(input_x)

#z_layer
z_mean = Dense(latent_dim)(h)
z_log_sigma = Dense(latent_dim)(h)
z = Lambda(sampling)([z_mean, z_log_sigma])

# Reconstruction decoder
decoder1 = RepeatVector(timesteps)(z)
decoder1 = LSTM(inter_dim, activation='relu', return_sequences=True)(decoder1)
decoder1 = TimeDistributed(Dense(features))(decoder1)

def vae_loss2(input_x, decoder1, z_log_sigma, z_mean):
""" Calculate loss = reconstruction loss + KL loss for each data in minibatch """
# E[log P(X|z)]
recon = K.sum(K.binary_crossentropy(input_x, decoder1))
# D_KL(Q(z|X) || P(z|X)); calculate in closed form as both dist. are Gaussian
kl = 0.5 * K.sum(K.exp(z_log_sigma) + K.square(z_mean) - 1. - z_log_sigma)

return recon + kl

m = Model(input_x, decoder1)
m.add_loss(vae_loss2(input_x, decoder1, z_log_sigma, z_mean)) #<===========
m.compile(loss=None, optimizer='adam')
here the running notebook

关于tensorflow - 用于时间序列异常检测的 Keras LSTM-VAE(变分自编码器),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63987125/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com