- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试解决 GEKKO 中的以下最优控制问题:
我事先知道 c
的路径是:
其中参数值为:r = 0.33、i = 0.5、K(0) = 10 和 T = 10。
我用 Python 编写了以下代码:
import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO
m = GEKKO(remote=True)
nt = 101; m.time = np.linspace(0,10,nt)
r = 0.33
i = 0.5
# Variables
c = m.Var()
k = m.Var(value=10)
objective = m.Var()
rate = [-r*t/10 for t in range(0, 101)]
factor = m.exp(rate)
p = np.zeros(nt)
p[-1] = 1.0
final = m.Param(value=p)
disc = m.Param(value=factor)
# Equations
m.Equation(k.dt() == i*k - c)
m.Equation(objective.dt() == disc*m.log(c))
# Objective Function
m.Maximize(final*objective)
m.options.IMODE = 6
m.solve()
plt.figure(1)
plt.plot(m.time,c.value,'k:',LineWidth=2,label=r'$C$')
plt.plot(m.time,k.value,'b-',LineWidth=2,label=r'$K$')
plt.legend(loc='best')
plt.xlabel('Time')
plt.ylabel('Value')
plt.show()
这显然是不对的,因为 c
应该会随着时间的推移而增加,因为只关注之前给出的解决方案。
我不确定我哪里错了。
最佳答案
当前编写的最优控制问题是无界的。 c
的值将趋于无穷大以最大化函数。我将上限设置为 100
在 c
解算器去了那个界限。我重新制定了模型以反射(reflect)当前的问题陈述。这里有一些建议:
m.integral()
使模型更具可读性的函数。c
值不是 0
(默认)。您可能还想使用 c>0.01
设置下限这样m.log(c)
如果求解器尝试一个值 <0
则不是未定义的.factor = m.exp(rate)
.使用 factor = np.exp(rate)
相反,除非它在可以对其进行评估的 Gekko 方程式中。m.options.NODES=3
与 c=m.MV()
和 c.STATUS=1
以提高求解精度。默认值为 m.options.NODES=2
那不那么准确。m.free_initial(c)
释放初始条件计算c
的初始值.import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO
m = GEKKO(remote=True)
nt = 101; m.time = np.linspace(0,10,nt)
r = 0.33
i = 0.5
# Variables
c = m.MV(4,lb=0.01,ub=100); c.STATUS=1
#m.free_initial(c)
k = m.Var(value=10)
objective = m.Var(0)
t = m.Param(m.time)
m.Equation(objective==m.exp(-r*t)*m.log(c))
# just to include on the plot
iobj = m.Intermediate(m.integral(objective))
p = np.zeros(nt)
p[-1] = 1.0
final = m.Param(value=p)
# Equations
m.Equation(k.dt() == i*k - c)
# Objective Function
m.Maximize(final*m.integral(objective))
m.options.IMODE = 6
m.solve()
plt.figure(1)
plt.subplot(3,1,1)
plt.plot(m.time,c.value,'k:',linewidth=2,label=r'$C_{gekko}$')
C_sol = r*10*np.exp((i-r)*m.time)/(1-np.exp(-r*10))
plt.plot(m.time,C_sol,'r--',linewidth=2,label=r'$C_{exact}$')
plt.ylabel('Value'); plt.legend(loc='best')
plt.subplot(3,1,2)
plt.plot(m.time,k.value,'b-',linewidth=2,label=r'$K$')
plt.legend(loc='best')
plt.subplot(3,1,3)
plt.plot(m.time,objective.value,'g:',linewidth=2,label=r'$obj$')
plt.plot(m.time,iobj.value,'k',linewidth=2,label=r'$\int obj$')
plt.legend(loc='best')
plt.xlabel('Time')
plt.show()
是否缺少此问题的其他信息?
编辑: 添加了附加约束 k>0
.
按照评论中的建议添加了额外的约束。由于最后一个 c
与精确解最后有一点不同。值似乎不会影响解决方案。
import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO
m = GEKKO(remote=True)
nt = 101; m.time = np.linspace(0,10,nt)
r = 0.33
i = 0.5
# Variables
c = m.MV(4,lb=0.001,ub=100); c.STATUS=1; c.DCOST=1e-6
m.free_initial(c)
k = m.Var(value=10,lb=0)
objective = m.Var(0)
t = m.Param(m.time)
m.Equation(objective==m.exp(-r*t)*m.log(c))
# just to include on the plot
iobj = m.Intermediate(m.integral(objective))
p = np.zeros(nt)
p[-1] = 1.0
final = m.Param(value=p)
# Equations
m.Equation(k.dt() == i*k - c)
# Objective Function
m.Maximize(final*m.integral(objective))
m.options.IMODE = 6
m.options.NODES = 3
m.solve()
plt.figure(1)
plt.subplot(3,1,1)
plt.plot(m.time,c.value,'k:',linewidth=2,label=r'$C_{gekko}$')
C_sol = r*10*np.exp((i-r)*m.time)/(1-np.exp(-r*10))
plt.plot(m.time,C_sol,'r--',linewidth=2,label=r'$C_{exact}$')
plt.ylabel('Value'); plt.legend(loc='best')
plt.subplot(3,1,2)
plt.plot(m.time,k.value,'b-',linewidth=2,label=r'$K$')
plt.legend(loc='best')
plt.subplot(3,1,3)
plt.plot(m.time,objective.value,'g:',linewidth=2,label=r'$obj$')
plt.plot(m.time,iobj.value,'k',linewidth=2,label=r'$\int obj$')
plt.legend(loc='best')
plt.xlabel('Time')
plt.show()
关于python - Gekko:获得的解决方案有问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/65689673/
我很好奇 IPOPT 求解器的每个求解器输出列的建议。有什么 Material 可以解释这个吗? 以下是IPOPT求解器的求解器输出。我想知道 inf_pr , inf_du , lg(mu) , |
我是 Python 中的 Gekko 库的新手,想知道我是否可以在 Gekko 中按照 LP 公式建模。 LP 公式意味着我想找到最佳的电器调度类次,以使总电力成本最小化。但是,如约束所示,每天的总耗
当使用 max2 在 Python GEKKO 中按顺序求解模型(即 IMODE >= 4)失败时和 max3 GEKKO 附带的功能。 这是针对用例,其中 np.maximum或标准max函数将 G
我正在学习如何根据实验室批量 react 器数据使用 GEKKO 进行动力学参数估计,该数据主要由 A、C 和 P 三种物质的浓度分布组成。为了我的问题,我使用的是我以前的模型精选于 question
我正在尝试使用 GEKKO 优化电力系统.具体使用 MPC 到 IEEE 14 bus测试用例。 该系统包含 14 条总线,模型由状态变量 theta 和 omega(分别为发电机的功率角和旋转频率)
EDIT2:好吧,我是个白痴。我关于横向误差的数学有问题。我已经将该等式重写为更简单的东西并且它现在可以工作了。我会离开这里以防它对任何人有用。但如果可能的话,我仍然希望有人能确保我没有做任何过分的事
我终于回到了我的项目上并找到了我的下一个障碍。 我有一个封闭的歧管: 这也是游戏即时建模中的示例轨迹 我可以让我的系统像普通汽车一样运行。我很好奇在 gekko 中合并这种类型的约束的最佳方法是什么。
Gekko 中是否有一个类轮来检索拉格朗日乘数(例如 GAMS 中的边际),或者如果不是其他方式的单行? 谢谢您的帮助。 最佳答案 这是检索拉格朗日乘数的一行。 lam = np.loadtxt(m.
我喜欢在 y 模型中约束变量值 u -0.5) # Model objective m.Obj(-Tc) # options m.options.IMODE = 6 # Problem type:
我正在尝试解决 gekko 中的一个简单混合操作。 blender mx采用两个入口流 Feed1和 Feed2 .预期结果是导出流的质量流量mx.outlet应该是入口流的质量流量的总和。 这是我尝
我想将 LINGO 代码转换为 Python GEKKO 代码。这是 Lingo 代码、lingo 结果和 gekko 代码。我不能写第二个和第三个约束。它返回索引错误,但我不明白为什么?有人可以帮忙
我正在研究一个相当大的 MINLP,模型大小约为 270,000 个变量和方程 - 5,000 个二进制文件。将 Gekko 与 APOT 求解器结合使用,我可以在大约 868 秒(不到 15 分钟)
我有一个 RTO 问题,我想用一些时间相关的参数解决多个模拟时间步长。但是,我在运行时遇到了困难,并注意到总系统时间与实际求解时间相比相对较大。因此,我试图减少总的解析时间,因为所有方程式都保持不变—
intpolatn 函数从 GEKKO 最大化目标函数接收整数变量 u_hub_next。 intpolatn 只是为了检查整数是否落在 windvel[0] 和 windvel[1] 之间以及后续的
我正在优化的问题是在传输网络中 build 发电厂。为此,我在每辆公交车上放置了发电厂,并让优化告诉我应该 build 哪些发电厂以最大限度地降低运行成本。 为了模拟植物的放置,我尝试使用一组二进制变
我在 super 计算中心本地使用 Gekko。我有一个解决 MINLP 的脚本,它可以轻松扩展以添加更多混合整数变量。我想了解随着变量数量的增加以及我需要请求的内存量,计算的成本会有多高。 当我只请
我目前正在使用 MPC 让 TCLab 加热器达到某个设定点温度。我试图让 MHE 每 50 秒更新一次某些参数值。我有一个以前的 MPC 模型,效果很好,我尝试在我的主循环中添加一个部分,让它切换以
使用 Gekko 拟合数据的数值 ODE 解。 嗨,大家好! 我想知道是否可以使用 GEKKO 拟合 ODE 的系数。 我尝试复制 example given here 失败. 这是我想出的(但有缺陷
祝大家节日快乐!我终于有一些时间来处理我的项目了,当然我和往常一样被困住了,哈哈。 我正在寻找可以让我能够模拟以下内容的指导/示例: 我有一个二进制(0 或 1)输入(我们称之为“跳跃”),我希望它只
我无法理解从 GEKKO 模型收到的错误消息。 就上下文而言,该模型应该优化气 Spring 辅助门的气 Spring 力和尺寸参数,以最大限度地减少运算符(operator)关闭门所需的力。我的目的
我是一名优秀的程序员,十分优秀!