- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在创建一个包含 1024 * 1024 * 1024 个元素的 int(32 位) vector ,如下所示:
std::vector<int> nums;
for (size_t i = 0; i < 1024 * 1024 * 1024; i++) {
nums.push_back(rand() % 1024);
}
此时包含 4 GB 的随机数据。然后我简单地总结 vector 中的所有元素,如下所示:
uint64_t total = 0;
for (auto cn = nums.begin(); cn < nums.end(); cn++) {
total += *cn;
}
这大约需要 0.18 秒,这意味着数据的处理速度约为 22.2 GB/秒。我在 M1 上运行它,内存带宽高得多,约为 60GB/s。有没有办法让上面的代码在单核上运行得更快?
编辑:手动 SIMD 版本:
int32x4_t simd_total = vmovq_n_s32(0);
for (auto cn = nums.begin(); cn < nums.end()-3; cn +=4) {
const int32_t v[4] = {cn[0], cn[1], cn[2], cn[3]}
simd_total = vaddq_s32(simd_total, vld1q_s32(v));
}
return vaddvq_s32(simd_total);
SIMD 版本与非手动 SIMD 版本具有相同的性能。
编辑 2:好的,所以我将 vector 元素更改为 uint32_t,并将结果类型更改为 uint32_t(如@Peter Cordes 所建议):
uint32_t sum_ints_32(const std::vector<uint32_t>& nums) {
uint32_t total = 0;
for (auto cn = nums.begin(); cn < nums.end(); cn++) {
total += *cn;
}
return total;
}
这运行得更快 (~45 GB/s)。这是反汇编:
0000000100002218 <__Z11sum_ints_32RKNSt3__16vectorIjNS_9allocatorIjEEEE>:
100002218: a940200c ldp x12, x8, [x0]
10000221c: eb08019f cmp x12, x8
100002220: 54000102 b.cs 100002240 <__Z11sum_ints_32RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x28> // b.hs, b.nlast
100002224: aa2c03e9 mvn x9, x12
100002228: 8b090109 add x9, x8, x9
10000222c: f1006d3f cmp x9, #0x1b
100002230: 540000c8 b.hi 100002248 <__Z11sum_ints_32RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x30> // b.pmore
100002234: 52800000 mov w0, #0x0 // #0
100002238: aa0c03e9 mov x9, x12
10000223c: 14000016 b 100002294 <__Z11sum_ints_32RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x7c>
100002240: 52800000 mov w0, #0x0 // #0
100002244: d65f03c0 ret
100002248: d342fd29 lsr x9, x9, #2
10000224c: 9100052a add x10, x9, #0x1
100002250: 927ded4b and x11, x10, #0x7ffffffffffffff8
100002254: 8b0b0989 add x9, x12, x11, lsl #2
100002258: 9100418c add x12, x12, #0x10
10000225c: 6f00e400 movi v0.2d, #0x0
100002260: aa0b03ed mov x13, x11
100002264: 6f00e401 movi v1.2d, #0x0
100002268: ad7f8d82 ldp q2, q3, [x12, #-16]
10000226c: 4ea08440 add v0.4s, v2.4s, v0.4s
100002270: 4ea18461 add v1.4s, v3.4s, v1.4s
100002274: 9100818c add x12, x12, #0x20
100002278: f10021ad subs x13, x13, #0x8
10000227c: 54ffff61 b.ne 100002268 <__Z11sum_ints_32RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x50> // b.any
100002280: 4ea08420 add v0.4s, v1.4s, v0.4s
100002284: 4eb1b800 addv s0, v0.4s
100002288: 1e260000 fmov w0, s0
10000228c: eb0b015f cmp x10, x11
100002290: 540000a0 b.eq 1000022a4 <__Z11sum_ints_32RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x8c> // b.none
100002294: b840452a ldr w10, [x9], #4
100002298: 0b000140 add w0, w10, w0
10000229c: eb08013f cmp x9, x8
1000022a0: 54ffffa3 b.cc 100002294 <__Z11sum_ints_32RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x7c> // b.lo, b.ul, b.last
1000022a4: d65f03c0 ret
我还重写了 Manual-SIMD 版本:
uint32_t sum_ints_simd_2(const std::vector<uint32_t>& nums) {
uint32x4_t simd_total = vmovq_n_u32(0);
for (auto cn = nums.begin(); cn < nums.end()-3; cn +=4) {
const uint32_t v[4] = { cn[0], cn[1], cn[2], cn[3] };
simd_total = vaddq_u32(simd_total, vld1q_u32(v));
}
return vaddvq_u32(simd_total);
}
它仍然比非手动 SIMD 版本慢 2 倍,并导致以下反汇编:
0000000100002464 <__Z15sum_ints_simd_2RKNSt3__16vectorIjNS_9allocatorIjEEEE>:
100002464: a9402408 ldp x8, x9, [x0]
100002468: d1003129 sub x9, x9, #0xc
10000246c: 6f00e400 movi v0.2d, #0x0
100002470: eb09011f cmp x8, x9
100002474: 540000c2 b.cs 10000248c <__Z15sum_ints_simd_2RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x28> // b.hs, b.nlast
100002478: 6f00e400 movi v0.2d, #0x0
10000247c: 3cc10501 ldr q1, [x8], #16
100002480: 4ea08420 add v0.4s, v1.4s, v0.4s
100002484: eb09011f cmp x8, x9
100002488: 54ffffa3 b.cc 10000247c <__Z15sum_ints_simd_2RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x18> // b.lo, b.ul, b.last
10000248c: 4eb1b800 addv s0, v0.4s
100002490: 1e260000 fmov w0, s0
100002494: d65f03c0 ret
为了达到与自动矢量化版本相同的速度,我们可以为我们的手动 SIMD 版本使用 uint32x4x2 而不是 uint32x4:
uint32_t sum_ints_simd_3(const std::vector<uint32_t>& nums) {
uint32x4x2_t simd_total;
simd_total.val[0] = vmovq_n_u32(0);
simd_total.val[1] = vmovq_n_u32(0);
for (auto cn = nums.begin(); cn < nums.end()-7; cn +=8) {
const uint32_t v[4] = { cn[0], cn[1], cn[2], cn[3] };
const uint32_t v2[4] = { cn[4], cn[5], cn[6], cn[7] };
simd_total.val[0] = vaddq_u32(simd_total.val[0], vld1q_u32(v));
simd_total.val[1] = vaddq_u32(simd_total.val[1], vld1q_u32(v2));
}
return vaddvq_u32(simd_total.val[0]) + vaddvq_u32(simd_total.val[1]);
}
为了获得更快的速度,我们可以利用 uint32x4x4(这让我们获得大约 53 GB/s):
uint32_t sum_ints_simd_4(const std::vector<uint32_t>& nums) {
uint32x4x4_t simd_total;
simd_total.val[0] = vmovq_n_u32(0);
simd_total.val[1] = vmovq_n_u32(0);
simd_total.val[2] = vmovq_n_u32(0);
simd_total.val[3] = vmovq_n_u32(0);
for (auto cn = nums.begin(); cn < nums.end()-15; cn +=16) {
const uint32_t v[4] = { cn[0], cn[1], cn[2], cn[3] };
const uint32_t v2[4] = { cn[4], cn[5], cn[6], cn[7] };
const uint32_t v3[4] = { cn[8], cn[9], cn[10], cn[11] };
const uint32_t v4[4] = { cn[12], cn[13], cn[14], cn[15] };
simd_total.val[0] = vaddq_u32(simd_total.val[0], vld1q_u32(v));
simd_total.val[1] = vaddq_u32(simd_total.val[1], vld1q_u32(v2));
simd_total.val[2] = vaddq_u32(simd_total.val[2], vld1q_u32(v3));
simd_total.val[3] = vaddq_u32(simd_total.val[3], vld1q_u32(v4));
}
return vaddvq_u32(simd_total.val[0])
+ vaddvq_u32(simd_total.val[1])
+ vaddvq_u32(simd_total.val[2])
+ vaddvq_u32(simd_total.val[3]);
}
这让我们进行了以下反汇编:
0000000100005e34 <__Z15sum_ints_simd_4RKNSt3__16vectorIjNS_9allocatorIjEEEE>:
100005e34: a9402408 ldp x8, x9, [x0]
100005e38: d100f129 sub x9, x9, #0x3c
100005e3c: 6f00e403 movi v3.2d, #0x0
100005e40: 6f00e402 movi v2.2d, #0x0
100005e44: 6f00e401 movi v1.2d, #0x0
100005e48: 6f00e400 movi v0.2d, #0x0
100005e4c: eb09011f cmp x8, x9
100005e50: 540001c2 b.cs 100005e88 <__Z15sum_ints_simd_4RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x54> // b.hs, b.nlast
100005e54: 6f00e400 movi v0.2d, #0x0
100005e58: 6f00e401 movi v1.2d, #0x0
100005e5c: 6f00e402 movi v2.2d, #0x0
100005e60: 6f00e403 movi v3.2d, #0x0
100005e64: ad401504 ldp q4, q5, [x8]
100005e68: ad411d06 ldp q6, q7, [x8, #32]
100005e6c: 4ea38483 add v3.4s, v4.4s, v3.4s
100005e70: 4ea284a2 add v2.4s, v5.4s, v2.4s
100005e74: 4ea184c1 add v1.4s, v6.4s, v1.4s
100005e78: 4ea084e0 add v0.4s, v7.4s, v0.4s
100005e7c: 91010108 add x8, x8, #0x40
100005e80: eb09011f cmp x8, x9
100005e84: 54ffff03 b.cc 100005e64 <__Z15sum_ints_simd_4RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x30> // b.lo, b.ul, b.last
100005e88: 4eb1b863 addv s3, v3.4s
100005e8c: 1e260068 fmov w8, s3
100005e90: 4eb1b842 addv s2, v2.4s
100005e94: 1e260049 fmov w9, s2
100005e98: 0b080128 add w8, w9, w8
100005e9c: 4eb1b821 addv s1, v1.4s
100005ea0: 1e260029 fmov w9, s1
100005ea4: 0b090108 add w8, w8, w9
100005ea8: 4eb1b800 addv s0, v0.4s
100005eac: 1e260009 fmov w9, s0
100005eb0: 0b090100 add w0, w8, w9
100005eb4: d65f03c0 ret
疯狂的东西
最佳答案
-march=native
有帮助吗? IDK 如果有任何 SIMD 特性是 Apple clang 尚未在第一代 AArch64 MacOS CPU 上利用的,但 clang 可能只是一般采用基线 AArch64。
如果使用 uint32_t
总和,编译器不必在添加之前加宽每个元素,是否可以更快?这意味着每条 SIMD 指令只能处理来自内存的数据量是相同大小的累加器的一半。
https://godbolt.org/z/7c19913jE显示 Thomas Matthews 的展开建议实际上确实让 clang11 -O3 -march=apple-a13
展开它制作的 SIMD 向量化 asm 循环。这种来源的改变并不是一般的胜利,例如很多对于 x86-64 clang -O3 -march=haswell
更糟糕,但它在这里确实有帮助。
另一种可能性是单核无法使内存带宽饱和。但基准测试结果公布by Anandtech for example似乎排除了这一可能性:他们发现即使是单个内核也可以达到 59GB/s,尽管这可能是在运行优化的 memcpy 函数。
(他们说单个 Firestorm 核心几乎可以使内存 Controller 饱和这一事实令人震惊,这是我们以前在设计中从未见过的。这听起来有点奇怪;台式机/笔记本电脑英特尔CPU 非常接近,unlike their "server" chips。也许不像 Apple 那样接近?
与现代 x86 相比,M1 具有相当低的内存延迟,因此这可能有助于单核能够跟踪传入的负载,以保持必要的延迟 x 带宽乘积在运行中,即使它具有高内存带宽也是如此。
关于C++优化内存读取速度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/67974127/
我在具有 2CPU 和 3.75GB 内存 (https://aws.amazon.com/ec2/instance-types/) 的 c3.large Amazon EC2 ubuntu 机器上运
我想通过用户空间中的mmap-ing并将地址发送到内核空间从用户空间写入VGA内存(视频内存,而不是缓冲区),我将使用pfn remap将这些mmap-ed地址映射到vga内存(我将通过 lspci
在 Mathematica 中,如果你想让一个函数记住它的值,它在语法上是很轻松的。例如,这是标准示例 - 斐波那契: fib[1] = 1 fib[2] = 1 fib[n_]:= fib[n] =
我读到动态内存是在运行时在堆上分配的,而静态内存是在编译时在堆栈上分配的,因为编译器知道在编译时必须分配多少内存。 考虑以下代码: int n; cin>>n; int a[n]; 如果仅在运行期间读
我是 Python 的新手,但我之前还不知道这一点。我在 for 循环中有一个基本程序,它从站点请求数据并将其保存到文本文件但是当我检查我的任务管理器时,我发现内存使用量只增加了?长时间运行时,这对我
我正在设计一组数学函数并在 CPU 和 GPU(使用 CUDA)版本中实现它们。 其中一些函数基于查找表。大多数表占用 4KB,其中一些占用更多。基于查找表的函数接受一个输入,选择查找表的一两个条目,
读入一个文件,内存被动态分配给一个字符串,文件内容将被放置在这里。这是在函数内部完成的,字符串作为 char **str 传递。 使用 gdb 我发现在行 **(str+i) = fgetc(aFil
我需要证实一个理论。我正在学习 JSP/Java。 在查看了一个现有的应用程序(我没有写)之后,我注意到一些我认为导致我们的性能问题的东西。或者至少是其中的一部分。 它是这样工作的: 1)用户打开搜索
n我想使用memoization缓存某些昂贵操作的结果,这样就不会一遍又一遍地计算它们。 两个memoise和 R.cache适合我的需要。但是,我发现缓存在调用之间并不可靠。 这是一个演示我看到的问
我目前正在分析一些 javascript shell 代码。这是该脚本中的一行: function having() { memory = memory; setTimeout("F0
我有一种情况,我想一次查询数据库,然后再将整个数据缓存在内存中。 我得到了内存中 Elasticsearch 的建议,我用谷歌搜索了它是什么,以及如何在自己的 spring boot 应用程序中实现它
我正在研究 Project Euler (http://projecteuler.net/problem=14) 的第 14 题。我正在尝试使用内存功能,以便将给定数字的序列长度保存为部分结果。我正在
所以,我一直在做 Java 内存/注意力游戏作业。我还没有达到我想要的程度,它只完成了一半,但我确实让 GUI 大部分工作了......直到我尝试向我的框架添加单选按钮。我认为问题可能是因为我将 JF
我一直在尝试使用 Flask-Cache 的 memoize 功能来仅返回 statusTS() 的缓存结果,除非在另一个请求中满足特定条件,然后删除缓存。 但它并没有被删除,并且 Jinja 模板仍
我对如何使用 & 运算符来减少内存感到非常困惑。 我可以回答下面的问题吗? clase C{ function B(&$a){ $this->a = &$a; $thi
在编写代码时,我遇到了一个有趣的问题。 我有一个 PersonPOJO,其 name 作为其 String 成员之一及其 getter 和 setter class PersonPOJO { priv
在此代码中 public class Base { int length, breadth, height; Base(int l, int b, int h) { l
Definition Structure padding is the process of aligning data members of the structure in accordance
在 JavaScript Ninja 的 secret 中,作者提出了以下方案,用于在没有闭包的情况下内存函数结果。他们通过利用函数是对象这一事实并在函数上定义一个属性来存储过去调用函数的结果来实现这
我正在尝试找出 map 消耗的 RAM 量。所以,我做了以下事情;- Map cr = crPair.collectAsMap(); // 200+ entries System.out.printl
我是一名优秀的程序员,十分优秀!