- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
由于我没有收到 CUDA 论坛的回复,我在这里试试:
在 CUDA 中做了几个程序后,我现在开始获得它们的有效带宽。但是我有一些奇怪的结果,例如在下面的代码中,我可以对向量中的所有元素求和(不考虑维度),展开代码和“正常”代码的带宽似乎具有相同的中值结果(大约 3000 Gb/s)我不知道我是否做错了什么(AFAIK 程序运行良好)但从我目前阅读的内容来看,展开代码应该具有更高的带宽。
#include <stdio.h>
#include <limits.h>
#include <stdlib.h>
#include <math.h>
#define elements 1000
#define blocksize 16
__global__ void vecsumkernel(float*input, float*output,int nelements){
__shared__ float psum[blocksize];
int tid=threadIdx.x;
if(tid + blockDim.x * blockIdx.x < nelements)
psum[tid]=input[tid+blockDim.x*blockIdx.x];
else
psum[tid]=0.0f;
__syncthreads();
//WITHOUT UNROLL
int stride;
for(stride=blockDim.x/2;stride>0;stride>>=1){
if(tid<stride)
psum[tid]+=psum[tid+stride];
__syncthreads();
}
if(tid==0)
output[blockIdx.x]=psum[0];
//WITH UNROLL
/*
if(blocksize>=512 && tid<256) psum[tid]+=psum[tid+256];__syncthreads();
if(blocksize>=256 && tid<128) psum[tid]+=psum[tid+128];__syncthreads();
if(blocksize>=128 && tid<64) psum[tid]+=psum[tid+64];__syncthreads();
if (tid < 32) {
if (blocksize >= 64) psum[tid] += psum[tid + 32];
if (blocksize >= 32) psum[tid] += psum[tid + 16];
if (blocksize >= 16) psum[tid] += psum[tid + 8];
if (blocksize >= 8) psum[tid] += psum[tid + 4];
if (blocksize >= 4) psum[tid] += psum[tid + 2];
if (blocksize >= 2) psum[tid] += psum[tid + 1];
}*/
if(tid==0)
output[blockIdx.x]=psum[0];
}
void vecsumv2(float*input, float*output, int nelements){
dim3 dimBlock(blocksize,1,1);
int i;
for(i=((int)ceil((double)(nelements)/(double)blocksize))*blocksize;i>1;i(int)ceil((double)i/(double)blocksize)){
dim3 dimGrid((int)ceil((double)i/(double)blocksize),1,1);
printf("\ni=%d\ndimgrid=%u\n ",i,dimGrid.x);
vecsumkernel<<<dimGrid,dimBlock>>>(i==((int)ceil((double)(nelements)/(double)blocksize))*blocksize ?input:output,output,i==((int)ceil((double)(nelements)/(double)blocksize))*blocksize ? elements:i);
}
}
void printVec(float*vec,int dim){
printf("\n{");
for(int i=0;i<dim;i++)
printf("%f ",vec[i]);
printf("}\n");
}
int main(){
cudaEvent_t evstart, evstop;
cudaEventCreate(&evstart);
cudaEventCreate(&evstop);
float*input=(float*)malloc(sizeof(float)*(elements));
for(int i=0;i<elements;i++)
input[i]=(float) i;
float*output=(float*)malloc(sizeof(float)*elements);
float *input_d,*output_d;
cudaMalloc((void**)&input_d,elements*sizeof(float));
cudaMalloc((void**)&output_d,elements*sizeof(float));
cudaMemcpy(input_d,input,elements*sizeof(float),cudaMemcpyHostToDevice);
cudaEventRecord(evstart,0);
vecsumv2(input_d,output_d,elements);
cudaEventRecord(evstop,0);
cudaEventSynchronize(evstop);
float time;
cudaEventElapsedTime(&time,evstart,evstop);
printf("\ntempo gasto:%f\n",time);
float Bandwidth=((1000*4*2)/10^9)/time;
printf("\n Bandwidth:%f Gb/s\n",Bandwidth);
cudaMemcpy(output,output_d,elements*sizeof(float),cudaMemcpyDeviceToHost);
cudaFree(input_d);
cudaFree(output_d);
printf("soma do vector");
printVec(output,4);
}
最佳答案
您展开的代码中有很多分支。我数了十个额外的分支。通常在 GPU 上的 warp 内分支是昂贵的,因为 warp 中的所有线程最终都在等待分支(发散)。
有关扭曲发散的更多信息,请参见此处:
http://forums.nvidia.com/index.php?showtopic=74842
您是否尝试过使用分析器查看发生了什么?
关于performance - CUDA性能疑虑,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/5340594/
这是我关于 Stack Overflow 的第一个问题,这是一个很长的问题。 tl;dr 版本是:我如何使用 thrust::device_vector如果我希望它存储不同类型的对象 DerivedC
我已使用 cudaMalloc 在设备上分配内存并将其传递给内核函数。是否可以在内核完成执行之前从主机访问该内存? 最佳答案 我能想到的在内核仍在执行时启动 memcpy 的唯一方法是在与内核不同的流
是否可以在同一节点上没有支持 CUDA 的设备的情况下编译 CUDA 程序,仅使用 NVIDIA CUDA Toolkit...? 最佳答案 你的问题的答案是肯定的。 nvcc编译器驱动程序与设备的物
我不知道 cuda 不支持引用参数。我的程序中有这两个函数: __global__ void ExtractDisparityKernel ( ExtractDisparity& es)
我正在使用 CUDA 5.0。我注意到编译器将允许我在内核中使用主机声明的 int 常量。但是,它拒绝编译任何使用主机声明的 float 常量的内核。有谁知道这种看似差异的原因? 例如,下面的代码可以
自从 CUDA 9 发布以来,显然可以将不同的线程和 block 分组到同一组中,以便您可以一起管理它们。这对我来说非常有用,因为我需要启动一个包含多个 block 的内核并等待所有 block 都同
我需要在 CUDA 中执行三线性插值。这是问题定义: 给定三个点向量:x[nx]、y[ny]、z[nz] 和一个函数值矩阵func[nx][ny][nz],我想在 x、y 范围之间的一些随机点处找到函
我认为由于 CUDA 可以执行 64 位 128 位加载/存储,因此它可能具有一些用于加/减/等的内在函数。像 float3 这样的向量类型,在像 SSE 这样更少的指令中。 CUDA 有这样的功能吗
我有一个问题,每个线程 block (一维)必须对共享内存内的一个数组进行扫描,并执行几个其他任务。 (该数组最多有 1024 个元素。) 有没有支持这种操作的好库? 我检查了 Thrust 和 Cu
我对线程的形成和执行方式有很多疑惑。 首先,文档将 GPU 线程描述为轻量级线程。假设我希望将两个 100*100 矩阵相乘。如果每个元素都由不同的线程计算,则这将需要 100*100 个线程。但是,
我正在尝试自己解决这个问题,但我不能。 所以我想听听你的建议。 我正在编写这样的内核代码。 VGA 是 GTX 580。 xxxx >> (... threadNum ...) (note. Shar
查看 CUDA Thrust 代码中的内核启动,似乎它们总是使用默认流。我可以让 Thrust 使用我选择的流吗?我在 API 中遗漏了什么吗? 最佳答案 我想在 Thrust 1.8 发布后更新 t
我想知道 CUDA 应用程序的扭曲调度顺序是否是确定性的。 具体来说,我想知道在同一设备上使用相同输入数据多次运行同一内核时,warp 执行的顺序是否会保持不变。如果没有,是否有任何东西可以强制对扭曲
一个 GPU 中可以有多少个 CUDA 网格? 两个网格可以同时存在于 GPU 中吗?还是一台 GPU 设备只有一个网格? Kernel1>(dst1, param1); Kernel1>(dst2,
如果我编译一个计算能力较低的 CUDA 程序,例如 1.3(nvcc 标志 sm_13),并在具有 Compute Capability 2.1 的设备上运行它,它是否会利用 Compute 2.1
固定内存应该可以提高从主机到设备的传输速率(api 引用)。但是我发现我不需要为内核调用 cuMemcpyHtoD 来访问这些值,也不需要为主机调用 cuMemcpyDtoA 来读取值。我不认为这会奏
我希望对 CUDA C 中负载平衡的最佳实践有一些一般性的建议和说明,特别是: 如果经纱中的 1 个线程比其他 31 个线程花费的时间长,它会阻止其他 31 个线程完成吗? 如果是这样,多余的处理能力
CUDA 中是否有像 opencl 一样的内置交叉和点积,所以 cuda 内核可以使用它? 到目前为止,我在规范中找不到任何内容。 最佳答案 您可以在 SDK 的 cutil_math.h 中找到这些
有一些与我要问的问题类似的问题,但我觉得它们都没有触及我真正要寻找的核心。我现在拥有的是一种 CUDA 方法,它需要将两个数组定义到共享内存中。现在,数组的大小由在执行开始后读入程序的变量给出。因此,
经线是 32 根线。 32 个线程是否在多处理器中并行执行? 如果 32 个线程没有并行执行,则扭曲中没有竞争条件。 在经历了一些例子后,我有了这个疑问。 最佳答案 在 CUDA 编程模型中,warp
我是一名优秀的程序员,十分优秀!