- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我读到当您还想使用模型回调时不能使用 Keras 进行交叉验证,但是 this post表明这毕竟是可能的。但是,我很难将其纳入我的上下文。
为了更详细地探讨这个问题,我正在关注 machinelearningmastery blog ,并使用 the iris dataset .
这是一个三类分类问题,我正在尝试使用多层感知器(目前一层,用于测试)。我现在的目标是在模型回调中工作,这样我就可以保存最佳模型的权重。下面,我尝试在我的部分 network_mlp
.为了表明模型在没有回调的情况下工作,我还包括了 network_mlp_no_callbacks
。 .
您应该能够将其复制/粘贴到 python session 中并运行它,没问题。要重现我看到的错误,请取消注释最后一行。
错误:RuntimeError: Cannot clone object <keras.wrappers.scikit_learn.KerasClassifier object at 0x7f7e1c9d2290>, as the constructor does not seem to set parameter callbacks
代码:第一段读入数据;第二个是带有回调的模型,它不起作用;第三种是没有回调的模型,它可以工作(提供上下文)。
#!/usr/bin/env python
import numpy as np
import pandas, math, sys, keras
from keras.models import Sequential
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from keras.utils import np_utils
from keras.utils.np_utils import to_categorical
from sklearn.preprocessing import LabelEncoder
def read_data_mlp(train_file):
train_data = pandas.read_csv("iris.csv", header=None)
train_data = train_data.values
X = train_data[:,0:4].astype(float)
Y = train_data[:,4]
X = X.astype('float32')
scaler = MinMaxScaler(feature_range=(0, 1))
# encode class values as integers
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
# convert integers to dummy variables (i.e. one hot encoded)
dummy_y = np_utils.to_categorical(encoded_Y)
X_train_s = scaler.fit_transform(X)
return (X_train_s, dummy_y)
def network_mlp(X, Y, out_dim=10, b_size=30, num_classes=3, epochs=10):
#out_dim is the dimensionality of the hidden layer;
#b_size is the batch size. There are 150 examples total.
filepath="weights_mlp.hdf5"
def mlp_model():
model = Sequential()
model.add(Dense(out_dim, input_dim=4, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
callbacks_list = [checkpoint]
estimator = KerasClassifier(build_fn=mlp_model, epochs=epochs, batch_size=b_size, verbose=0, callbacks=callbacks_list)
kfold = KFold(n_splits=10, shuffle=True, random_state=7)
results = cross_val_score(estimator, X, Y, cv=kfold)
print("MLP: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
return 0
def network_mlp_no_callbacks(X, Y, out_dim=10, b_size=30, num_classes=3, epochs=10):
def mlp_model():
model = Sequential()
model.add(Dense(out_dim, input_dim=4, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
estimator = KerasClassifier(build_fn=mlp_model, epochs=epochs, batch_size=b_size, verbose=0)
kfold = KFold(n_splits=10, shuffle=True, random_state=7)
results = cross_val_score(estimator, X, Y, cv=kfold)
print("MLP: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
return 0
if __name__=='__main__':
X, Y = read_data_mlp('iris.csv')
network_mlp_no_callbacks(X, Y, out_dim=10, b_size=30, num_classes=3, epochs = 10)
#network_mlp(X, Y, out_dim=10, b_size=30, num_classes=3, epochs = 10)
问题:如何将模型回调合并到 KerasClassifier 中?
最佳答案
该解决方案与您引用的其他答案非常接近,但略有不同,因为他们使用了多个估算器而您只有一个。通过将 fit_params={'callbacks': callbacks_list}
添加到 cross_val_score
调用,从 estimator
中删除回调列表,我能够让检查点工作> 初始化,并将 save_best_only
更改为 False
。
现在 network_mlp
中的代码部分如下所示:
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=False, mode='max')
callbacks_list = [checkpoint]
estimator = KerasClassifier(build_fn=mlp_model, epochs=epochs, batch_size=b_size, verbose=0)
kfold = KFold(n_splits=10, shuffle=True, random_state=7)
results = cross_val_score(estimator, X, Y, cv=kfold, fit_params={'callbacks': callbacks_list})
save_best_only=False
是必需的,因为您没有为神经网络设置验证拆分,因此 val_acc
不可用。如果您想使用验证子拆分,您可以将估算器初始化更改为:
estimator = KerasClassifier(build_fn=mlp_model, epochs=epochs, batch_size=b_size, verbose=0, validation_split=.25)
祝你好运!
关于运行交叉验证时的 Keras 回调,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43562449/
我想使用单个(交叉)编译器来编译不同 ARM 调用约定的代码:因为我总是想使用浮点和 NEON 指令,所以我只想选择硬浮点调用约定或软浮点(softfp)调用约定。 我的编译器默认为硬浮点,但它支持我
假设我正在构建一个依赖于两个库的 java 应用程序:A 和 B。A 和 B 都依赖于库 C。管理 A 和 B 使用相同版本的最佳方法是什么所以他们不冲突?我正在使用 Gradle。 最佳答案 从 G
我想在按钮的文本上添加图像。如果我将图像添加为按钮的背景,它就会添加到文本下方。预期结果作为图像添加。请帮忙 更新:我需要以编程方式执行此操作。 最佳答案 在 XML 中, * 在代码中
我已经开始使用 CSS3 制作动画了。 我尝试创建一个动画汉堡菜单,但结果有点难看。顶部和底部的条向右平移一点。所以旋转动画不是很流畅和正确。 这是结果 => 这是我的代码: /* HTML */
给定一个具有2条相交曲线的图像,如下图所示,我如何使用opencv或python检测和区分2条曲线? (所以我需要2条单独的曲线) 最佳答案 您可以扫描每一列,并从连接的零件中识别出簇。 伪算法: l
我正在尝试在 redhat 集群(x86_64 主机)上设置 cross-mingw。我没有 root 访问权限,并且可用的 mingw 二进制文件不起作用(坏 glibc 版本等)。我正在阅读本教程
我正在尝试在javaFX中开发一个游戏,当两个图像相交时,分数将被更新,并且障碍物将不可见。但不幸的是,在游戏中分数不断更新。 我想我无法在游戏中正确地使图像不可见。 以下是相关类的完整代码: pac
pikastar dot com 是网站,当向下滚动它然后在导航菜单展开固定位置时它 > 将穿过主 div。我该如何修复它。 #topNav.sticky { box-shadow: 0 10
我正在使用 Eclipse为 ARM 处理器交叉编译 g++ 项目。我在 Windows 环境中使用 yagarto 工具链。我对 C 项目没有问题,但是对于 C++,我一直收到错误: libc.a(
我想从两个哈希数组中获取并集/交集/差集,例如: array1 = [{:name =>'Guy1', :age => 45},{:name =>'Guy2', :age => 45}] array2
有没有办法在调用任何 Controller 操作之前执行一些代码? 我需要根据 get 参数的值设置 session 变量,而不考虑调用哪个 Controller 。 当然,一旦这个处理完成,请求需要
我刚开始使用 3D 网格,面向用于有限元分析。我想在立方体状矩阵中模拟 Material 的夹杂物(任何形状,但主要对球体和椭圆体感兴趣)。这些夹杂物不应彼此重合。 所以我想为python使用某种包,
我想知道以跨平台方式操作应用程序设置的最佳解决方案是什么。 在 iOS 中,我们可以在设置屏幕中更改应用程序外部的设置,但在 windows phone 和 android 中我们没有。 所以,我的想
var barcodeNum = ko.observable(""); VelocityMeetings.scan = function (params) { var errorMessage = k
这个问题在这里已经有了答案: Transforming data.frame in R (2 个答案) 关闭10 年前。 过去我问过一个关于如何create cross tables from a
我有两个共享同一个工厂的 Controller 。其中一个 Controller 正在更新工厂变量。其他人应该注意该变化并稍后显示。 我是这样尝试的: http://plnkr.co/edit/q1N
标题不好,但这是我发现的将我的问题与简单的表格交叉区分开来的方式,因为我之前的研究总是让我接触到这类主题。 我有几个表 - 为了简化起见,我们只用 3 个表来命名它们:A、B、C。我想将它们全部放在一
我需要做这样的事情(在 MySQL 中),我使用 UNION 的尝试直到现在才奏效。 理论上: SELECT * FROM tableA A JOIN tableB B ON A.tableAId =
注意:使用SDL 2.0,Cross header class问题 我在类之间进行交叉引用,主要是我的类初始化渲染器和我的纹理类引用渲染初始化。现在,我已经能够运行该程序,直到我开始放入纹理类,代码也
我有一个这样的字母数组 var letters = ["Y", "X", "A", "Y", "O", "H", "A", "O", "O"]; 我创建了一个循环来
我是一名优秀的程序员,十分优秀!