gpt4 book ai didi

google-bigquery - 错误 : Message: Too many sources provided: 15285. 限制为 10000

转载 作者:行者123 更新时间:2023-12-04 03:06:04 27 4
gpt4 key购买 nike

我目前正在尝试运行数据流(Apache Beam、Python SDK)任务以将 >100GB 的推文文件导入 BigQuery,但遇到了 错误:消息:提供的源太多:15285。限制为 10000 .

该任务获取推文 (JSON),提取 5 个相关字段,通过一些转换对它们进行一些转换/清理,然后将这些值写入 BigQuery,用于进一步处理。

Cloud Dataflow to BigQuery - too many sources但这似乎是由于有很多不同的输入文件引起的,而我只有一个输入文件,所以它似乎不相关。此外,那里提到的解决方案相当神秘,我不确定是否/如何将它们应用于我的问题。

我的猜测是 BigQuery 在持久化之前为每一行或其他内容写入临时文件,这就是“太多来源”的意思?

我该如何解决这个问题?

[编辑]

代码:

import argparse
import json
import logging

import apache_beam as beam

class JsonCoder(object):
"""A JSON coder interpreting each line as a JSON string."""

def encode(self, x):
return json.dumps(x)

def decode(self, x):
return json.loads(x)

def filter_by_nonempty_county(record):
if 'county_fips' in record and record['county_fips'] is not None:
yield record

def run(argv=None):

parser = argparse.ArgumentParser()
parser.add_argument('--input',
default='...',
help=('Input twitter json file specified as: '
'gs://path/to/tweets.json'))
parser.add_argument(
'--output',
required=True,
help=
('Output BigQuery table for results specified as: PROJECT:DATASET.TABLE '
'or DATASET.TABLE.'))

known_args, pipeline_args = parser.parse_known_args(argv)



p = beam.Pipeline(argv=pipeline_args)

# read text file

#Read all tweets from given source file
read_tweets = "Read Tweet File" >> beam.io.ReadFromText(known_args.input, coder=JsonCoder())

#Extract the relevant fields of the source file
extract_fields = "Project relevant fields" >> beam.Map(lambda row: {'text': row['text'],
'user_id': row['user']['id'],
'location': row['user']['location'] if 'location' in row['user'] else None,
'geo':row['geo'] if 'geo' in row else None,
'tweet_id': row['id'],
'time': row['created_at']})


#check what type of geo-location the user has
has_geo_location_or_not = "partition by has geo or not" >> beam.Partition(lambda element, partitions: 0 if element['geo'] is None else 1, 2)


check_county_not_empty = lambda element, partitions: 1 if 'county_fips' in element and element['county_fips'] is not None else 0

#tweet has coordinates partition or not
coordinate_partition = (p
| read_tweets
| extract_fields
| beam.ParDo(TimeConversion())
| has_geo_location_or_not)


#lookup by coordinates
geo_lookup = (coordinate_partition[1] | "geo coordinates mapping" >> beam.ParDo(BeamGeoLocator())
| "filter successful geo coords" >> beam.Partition(check_county_not_empty, 2))

#lookup by profile
profile_lookup = ((coordinate_partition[0], geo_lookup[0])
| "join streams" >> beam.Flatten()
| "Lookup from profile location" >> beam.ParDo(ComputeLocationFromProfile())
)


bigquery_output = "write output to BigQuery" >> beam.io.Write(
beam.io.BigQuerySink(known_args.output,
schema='text:STRING, user_id:INTEGER, county_fips:STRING, tweet_id:INTEGER, time:TIMESTAMP, county_source:STRING',
create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE))

#file_output = "write output" >> beam.io.WriteToText(known_args.output, coder=JsonCoder())


output = ((profile_lookup, geo_lookup[1]) | "merge streams" >> beam.Flatten()
| "Filter entries without location" >> beam.FlatMap(filter_by_nonempty_county)
| "project relevant fields" >> beam.Map(lambda row: {'text': row['text'],
'user_id': row['user_id'],
'county_fips': row['county_fips'],
'tweet_id': row['tweet_id'],
'time': row['time'],
'county_source': row['county_source']})
| bigquery_output)

result = p.run()
result.wait_until_finish()

if __name__ == '__main__':
logging.getLogger().setLevel(logging.DEBUG)
run()

有点复杂,如果直接在bigquery里做,估计会很费时间。代码读取推文 json,根据是否带有地理标记来拆分 PCollection,如果没有,它会尝试通过配置文件位置进行查找,将位置映射到与我们的 GIS 分析相关的位置,然后将其写入 BigQuery。

最佳答案

文件数量对应于处理元素的分片数量。

减少这种情况的一个技巧是生成一些随机键,并在写出之前根据这些键对元素进行分组。

例如,您可以在管道中使用以下 DoFnPTransform:

class _RoundRobinKeyFn(beam.DoFn):
def __init__(self, count):
self.count = count

def start_bundle(self):
self.counter = random.randint(0, self.count - 1)

def process(self, element):
self.counter += 1
if self.counter >= self.count:
self.counter -= self.count
yield self.counter, element

class LimitBundles(beam.PTransform):
def __init__(self, count):
self.count = count

def expand(self, input):
return input
| beam.ParDo(_RoundRobinKeyFn(self.count))
| beam.GroupByKey()
| beam.FlatMap(lambda kv: kv[1])

您只需在 bigquery_output 之前使用它:

output = (# ...
| LimitBundles(10000)
| bigquery_output)

(请注意,我只是在没有测试的情况下输入它,因此可能存在一些 Python 拼写错误。)

关于google-bigquery - 错误 : Message: Too many sources provided: 15285. 限制为 10000,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44255924/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com