gpt4 book ai didi

r - 将 DocumentTermMatrix 转换为 dgTMatrix

转载 作者:行者123 更新时间:2023-12-04 03:00:12 24 4
gpt4 key购买 nike

我正在尝试通过 text2vec 的 LDA 实现从 tm-package 运行 AssociatedPress 数据集。

我面临的问题是数据类型的不兼容:AssociatedPress 是一个 tm::DocumentTermMatrix,它又是 slam::的子类simple_triplet_matrixtext2vec 但是希望输入 xtext2vec::lda$fit_transform(x = ...)Matrix::dgTMatrix .

因此,我的问题是:有没有办法将 DocumentTermMatrix 强制为 text2vec 接受的内容?

最小(失败)示例:

library('tm')
library('text2vec')

data("AssociatedPress", package="topicmodels")

dtm <- AssociatedPress[1:10, ]

lda_model = LDA$new(
n_topics = 10,
doc_topic_prior = 0.1,
topic_word_prior = 0.01
)

doc_topic_distr =
lda_model$fit_transform(
x = dtm,
n_iter = 1000,
convergence_tol = 0.001,
n_check_convergence = 25,
progressbar = FALSE
)

...给出:

base::rowSums(x, na.rm = na.rm, dims = dims, ...) : 'x' must be an array of at least two dimensions

最佳答案

答案在duplicate由@Dmitriy Selivanov 提供。但它没有提到它来自基础包Matrix

由于我没有安装 topicmodels,我将使用 tm 包中包含的 crude 数据集。原理是一样的。

library(tm)
data("crude")

dtm <- DocumentTermMatrix(crude,
control = list(weighting =
function(x)
weightTfIdf(x, normalize =
FALSE),
stopwords = TRUE))

# transform into a sparseMatrix dgcMatrix
m <- Matrix::sparseMatrix(i=dtm$i,
j=dtm$j,
x=dtm$v,
dims=c(dtm$nrow, dtm$ncol),
dimnames = dtm$dimnames)
str(m)
Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
..@ i : int [1:1890] 6 1 18 6 6 5 9 12 9 5 ...
..@ p : int [1:1201] 0 1 2 3 4 5 6 8 9 11 ...
..@ Dim : int [1:2] 20 1200
..@ Dimnames:List of 2
.. ..$ Docs : chr [1:20] "127" "144" "191" "194" ...
.. ..$ Terms: chr [1:1200] "\"(it)" "\"demand" "\"expansion" "\"for" ...
..@ x : num [1:1890] 4.32 4.32 4.32 4.32 4.32 ...
..@ factors : list()

其余代码:

library(text2vec)

lda_model <- LDA$new(
n_topics = 10,
doc_topic_prior = 0.1,
topic_word_prior = 0.01
)

doc_topic_distr <-
lda_model$fit_transform(
x = m,
n_iter = 1000,
convergence_tol = 0.001,
n_check_convergence = 25,
progressbar = FALSE
)

INFO [2018-04-15 10:40:00] iter 25 loglikelihood = -32949.882
INFO [2018-04-15 10:40:00] iter 50 loglikelihood = -32901.801
INFO [2018-04-15 10:40:00] iter 75 loglikelihood = -32922.208
INFO [2018-04-15 10:40:00] early stopping at 75 iteration

关于r - 将 DocumentTermMatrix 转换为 dgTMatrix,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49835762/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com