gpt4 book ai didi

python - Detectron2 - 在目标检测阈值处提取区域特征

转载 作者:行者123 更新时间:2023-12-04 02:34:54 24 4
gpt4 key购买 nike

我正在尝试使用 detectron2 框架提取类检测高于某个阈值的区域特征。我稍后将在我的管道中使用这些功能(类似于:VilBert 第 3.1 节训练 ViLBERT)到目前为止,我已经用这个 config 训练了一个 Mask R-CNN,并在一些自定义数据上对其进行了微调。它表现良好。我想要做的是从我训练的模型中为生成的边界框提取特征。

编辑 :我查看了关闭我帖子的用户所写的内容并试图对其进行改进。尽管读者需要了解我在做什么的上下文。如果您对我如何改进问题有任何想法,或者您对如何做我想做的事情有一些见解,欢迎您提供反馈!

我有个问题:

  • 为什么我只得到一个 预测实例 ,但是当我看
    预测 CLS 分数 处,有超过 1 个通过
    临界点?

  • 我相信这是产生 ROI 特征的正确方法:
    images = ImageList.from_tensors(lst[:1], size_divisibility=32).to("cuda")  # preprocessed input tensor
    #setup config
    cfg = get_cfg()
    cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml"))
    cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
    cfg.SOLVER.IMS_PER_BATCH = 1
    cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 # only has one class (pnumonia)
    #Just run these lines if you have the trained model im memory
    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set the testing threshold for this model
    #build model
    model = build_model(cfg)
    DetectionCheckpointer(model).load("output/model_final.pth")
    model.eval()#make sure its in eval mode

    #run model
    with torch.no_grad():
    features = model.backbone(images.tensor.float())
    proposals, _ = model.proposal_generator(images, features)
    instances = model.roi_heads._forward_box(features, proposals)

    然后
    pred_boxes = [x.pred_boxes for x in instances]
    rois = model.roi_heads.box_pooler([features[f] for f in model.roi_heads.in_features], pred_boxes)

    这应该是我的 ROI 特征。

    我非常困惑的是,我可以使用建议和建议框及其类分数来获得该图像的前 n 个特征,而不是使用推理时产生的边界框。很酷,所以我尝试了以下方法:
    proposal_boxes = [x.proposal_boxes for x in proposals]
    proposal_rois = model.roi_heads.box_pooler([features[f] for f in model.roi_heads.in_features], proposal_boxes)
    #found here: https://detectron2.readthedocs.io/_modules/detectron2/modeling/roi_heads/roi_heads.html
    box_features = model.roi_heads.box_head(proposal_rois)
    predictions = model.roi_heads.box_predictor(box_features)
    pred_instances, losses = model.roi_heads.box_predictor.inference(predictions, proposals)

    我应该在哪里获得我的提案框功能及其 cls in my predictions object 。检查这个 预测 对象,我看到每个框的分数:

    预测对象中的 CLS 分数
    (tensor([[ 0.6308, -0.4926],
    [-1.6662, 1.5430],
    [-0.2080, 0.4856],
    ...,
    [-6.9698, 6.6695],
    [-5.6361, 5.4046],
    [-4.4918, 4.3899]], device='cuda:0', grad_fn=<AddmmBackward>),

    在 softmaxing 并将这些 cls 分数放入数据框中并将阈值设置为 0.6 后,我得到:
    pred_df = pd.DataFrame(predictions[0].softmax(-1).tolist())
    pred_df[pred_df[0] > 0.6]
    0 1
    0 0.754618 0.245382
    6 0.686816 0.313184
    38 0.722627 0.277373

    在我的预测对象中,我得到了相同的最高分,但只有 1 个实例而不是 2 个(我设置了 cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 ):

    预测实例 :
    [Instances(num_instances=1, image_height=800, image_width=800, fields=[pred_boxes: Boxes(tensor([[548.5992, 341.7193, 756.9728, 438.0507]], device='cuda:0',
    grad_fn=<IndexBackward>)), scores: tensor([0.7546], device='cuda:0', grad_fn=<IndexBackward>), pred_classes: tensor([0], device='cuda:0')])]

    预测还包含 张量:Nx4 或 Nx(Kx4) 边界框回归增量。 我不完全知道他们做什么和看起来像:

    预测对象中的边界框回归增量
    tensor([[ 0.2502,  0.2461, -0.4559, -0.3304],
    [-0.1359, -0.1563, -0.2821, 0.0557],
    [ 0.7802, 0.5719, -1.0790, -1.3001],
    ...,
    [-0.8594, 0.0632, 0.2024, -0.6000],
    [-0.2020, -3.3195, 0.6745, 0.5456],
    [-0.5542, 1.1727, 1.9679, -2.3912]], device='cuda:0',
    grad_fn=<AddmmBackward>)

    还有一点很奇怪,我的 提议框 我的预测框 不同但相似:

    提案边界框
    [Boxes(tensor([[532.9427, 335.8969, 761.2068, 438.8086],#this box vs the instance box
    [102.7041, 352.5067, 329.4510, 440.7240],
    [499.2719, 317.9529, 764.1958, 448.1386],
    ...,
    [ 25.2890, 379.3329, 28.6030, 429.9694],
    [127.1215, 392.6055, 328.6081, 489.0793],
    [164.5633, 275.6021, 295.0134, 462.7395]], device='cuda:0'))]

    最佳答案

    你快到了。看着 roi_heads.box_predictor.inference()你会发现它不是简单地对候选框的分数进行排序。首先,它应用框增量来重新调整提案框。然后它计算非最大抑制以删除非重叠框(同时还应用其他超设置,例如分数阈值)。最后,它根据它们的分数对 top-k 框进行排名。这可能解释了为什么您的方法产生相同的框分数但不同数量的输出框及其坐标。
    回到您最初的问题,这是在一次推理中提取建议框特征的方法:

    image = cv2.imread('my_image.jpg')
    height, width = image.shape[:2]
    image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
    inputs = [{"image": image, "height": height, "width": width}]
    with torch.no_grad():
    images = model.preprocess_image(inputs) # don't forget to preprocess
    features = model.backbone(images.tensor) # set of cnn features
    proposals, _ = model.proposal_generator(images, features, None) # RPN

    features_ = [features[f] for f in model.roi_heads.box_in_features]
    box_features = model.roi_heads.box_pooler(features_, [x.proposal_boxes for x in proposals])
    box_features = model.roi_heads.box_head(box_features) # features of all 1k candidates
    predictions = model.roi_heads.box_predictor(box_features)
    pred_instances, pred_inds = model.roi_heads.box_predictor.inference(predictions, proposals)
    pred_instances = model.roi_heads.forward_with_given_boxes(features, pred_instances)

    # output boxes, masks, scores, etc
    pred_instances = model._postprocess(pred_instances, inputs, images.image_sizes) # scale box to orig size
    # features of the proposed boxes
    feats = box_features[pred_inds]

    关于python - Detectron2 - 在目标检测阈值处提取区域特征,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62442039/

    24 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com