gpt4 book ai didi

r - 优化runtime : change the weight of edges in an igraph takes long time. 请问有什么办法可以优化吗?

转载 作者:行者123 更新时间:2023-12-04 02:33:13 25 4
gpt4 key购买 nike

我正在从 osmar 对象构建的 igraph 中搜索一组边,并想更改这些边的权重。由于我的图表很大,这个任务需要很长时间。由于我在循环中运行此函数,因此运行时间变得更大。

有什么方法可以优化它吗?

代码如下:

library(osmar)
library(igraph)
library(tidyr)
library(dplyr)

### Get data ----
src <- osmsource_api(url = "https://api.openstreetmap.org/api/0.6/")
muc_bbox <- center_bbox(11.575278, 48.137222, 1000, 1000)
muc <- get_osm(muc_bbox, src)

### Reduce to highways: ----
hways <- subset(muc, way_ids = find(muc, way(tags(k == "highway"))))
hways <- find(hways, way(tags(k == "name")))
hways <- find_down(muc, way(hways))
hways <- subset(muc, ids = hways)

#### Plot data ----
## Plot complete data and highways on top:
plot(muc)
plot_ways(muc, col = "lightgrey")
plot_ways(hways, col = "coral", add = TRUE)

### Define route start and end nodes: ----
id<-find(muc, node(tags(v %agrep% "Sendlinger Tor")))[1]
hway_start_node <-find_nearest_node(muc, id, way(tags(k == "highway")))
hway_start <- subset(muc, node(hway_start_node))

id <- find(muc, node(attrs(lon > 11.58 & lat > 48.15)))[1]
hway_end_node <- find_nearest_node(muc, id, way(tags(k == "highway")))
hway_end <- subset(muc, node(hway_end_node))

## Add the route start and and nodes to the plot:
plot_nodes(hway_start, add = TRUE, col = "red", pch = 19, cex = 2)
plot_nodes(hway_end, add = TRUE, col = "red", pch = 19, cex = 2)

### Create street graph ----
gr <- as.undirected(as_igraph(hways))

### Compute shortest route: ----
# Calculate route
route <- function(start_node,end_node) {
get.shortest.paths(gr,
from = as.character(start_node),
to = as.character(end_node),
mode = "all")[[1]][[1]]}
# Plot route
plot.route <- function(r,color) {
r.nodes.names <- as.numeric(V(gr)[r]$name)
r.ways <- subset(hways, ids = osmar::find_up(hways, node(r.nodes.names)))
plot_ways(r.ways, add = TRUE, col = color, lwd = 2)
}
nways <- 1
numway <- 1
r <- route(hway_start_node,hway_end_node)

# Plot route

color <- colorRampPalette(c("springgreen","royalblue"))(nways)[numway]
plot.route(r,color)


## Route details ----
# Construct a new osmar object containing only elements
# related to the nodes defining the route:
route_nodes <- as.numeric(V(gr)[r]$name)
route_ids <- find_up(hways, node(route_nodes))

osmar.route <- subset(hways, ids = route_ids)
osmar.nodes.ids <- osmar.route$nodes$attrs$id

# Extract the nodes’ coordinates,
osmar.nodes.coords <- osmar.route$nodes$attrs[, c("lon", "lat")]
osmar.nodes <- cbind(data.frame(ids = osmar.nodes.ids),
data.frame(ids_igraph = as.numeric(V(gr)[r]) ),
osmar.nodes.coords)


## Find edges ids containing points of interest ----
wished.coords <- data.frame(wlon = c(11.57631),
wlat = c(48.14016))


# Calculate all distances
distances <- crossing(osmar.nodes,wished.coords) %>%
mutate(dist = geosphere::distHaversine(cbind(lon,lat),cbind(wlon,wlat)))


# Select nodes below maximum distance :
mindist <- 50 #m

wished.nodes <- distances %>% filter(dist < mindist)

# Select edges incident to these nodes :
selected.edges <- unlist(incident_edges(gr,V(gr)[wished.nodes$ids_igraph]))

This is where the slowdown occurs: Weight of selected edges, change it by multiplying it with 10
E(gr)[selected.edges]$weight<-E(gr)[selected.edges]$weight*10

这是减速发生的地方:选定边缘的权重,通过将其乘以 10 来改变它

E(gr)[selected.edges]$weight<-E(gr)[selected.edges]$weight*10

也许我可以使用 HashMap ?

更新

HashMap

单位:秒

Hashmap:

expr min lq mean median uq max neval

Hashmap 3.248543 3.289474 3.472038 3.324417 3.734050 4.188924 100

Without 3.267549 3.333012 3.557179 3.367015 3.776429 5.643784 100

Sadly it does not seemt to bring a lot of improvement.


library(hashmap)
#https://github.com/nathan-russell/hashmap
H <- hashmap(E(gr)[selected.edges],E(gr)[selected.edges]$weight)
sapply(H$find(E(grr)[selected.edges]), function(x) x * 10)

更新:根据 igraph 文档,igraph 是线程安全的,因此我可以使用并行。

我目前正在尝试这个:

no_cores <- detectCores(logical = FALSE) 
data <- split(selected.edges,factor(sort(rank(selected.edges)%%no_cores)))
c_result <- mclapply(1:no_cores, function(x) {
E(gr)[unlist(data[[x]])]$weight * 1000 / mean_value }, mc.cores = no_cores)

E(gr)[unlist(data)]$weight<-unlist(c_result)

我想知道为什么我必须在并行循环之外执行“写入步骤”。当我试图在循环中将权重写回 igraph 时,它不起作用,即权重没有得到更新。

提前致谢!BR

最佳答案

Advanced R 中所示,R 中的实现性能会因语法的不同而有很大差异。

E(gr)[selected.edges]$weight<-E(gr)[selected.edges]$weight*10

是一个有效的语法,但也可以用其他方式表述:

set.edge.attribute(graph=gr,name="weight",index=selected.edges,value=10*get.edge.attribute(graph=gr,name="weight",index=selected.edges))

所以让我们比较一下这两种解决方案:

microbenchmark::microbenchmark(
ref={E(gr)[selected.edges]$weight<-E(gr)[selected.edges]$weight*10},
new={set.edge.attribute(graph=gr,name="weight",index=selected.edges,value=10*get.edge.attribute(graph=gr,name="weight",index=selected.edges))})

Unit: microseconds
expr min lq mean median uq max neval cld
ref 15920.404 16567.788 17793.4412 17111.583 18491.685 25867.477 100 b
new 246.974 266.462 296.5088 278.769 292.718 662.974 100 a

@Andreas,如果这可以解决您的问题,您能否检查一个更大的数据集?

关于r - 优化runtime : change the weight of edges in an igraph takes long time. 请问有什么办法可以优化吗?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62976848/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com