- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个网络,我使用 igraph 软件符合幂律:
plf = power.law.fit(degree_dist, impelementation = "plfit")
plf 变量现在包含以下变量:
$continuous
[1] TRUE
$alpha
[1] 1.63975
$xmin
[1] 0.03
$logLik
[1] 4.037563
$KS.stat
[1] 0.1721117
$KS.p
[1] 0.9984284
igraph 手册解释了这些变量:
xmin = the lower bound for fitting the power-law
alpha = the exponent of the fitted power-law distribution
logLik = the log-likelihood of the fitted parameters
KS.stat = the test statistic of a Kolmogorov-Smirnov test that compares the fitted distribution with the input vector. Smaller scores denote better fit
KS.p = the p-value of the Kolmogorov-Smirnov test. Small p-values (less than 0.05) indicate that the test rejected the hypothesis that the original data could have been drawn from the fitted power-law distribution
我想对这个幂律拟合做一个“拟合优度”检验。但我不确定该怎么做,虽然我发现这个问题已经在在线论坛上提出,但通常没有人回答。
我认为一种方法是执行 chisq.test(x,y)。一个输入参数(比如 x)将是 degree_dist 变量(观察到的网络度分布)。另一个输入参数(比如 y)是拟合的幂律方程,其形式应该是 P(k) = mk^a。
我不确定这是否是一种合理的方法,如果是这样,我需要有关如何构建拟合幂律方程的建议。
如果有帮助,我网络的 degree_dist 是:
0.00 0.73 0.11 0.05 0.02 0.02 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
(这些是网络中出现度数 0-21 的频率。(例如,73% 的节点具有度数 1,1% 的节点具有度数 21)。
********* 编辑 *************
我不确定上面使用 degree_dist 计算 plf 是否是一个错误。如果是这样,我还使用网络中 100 个节点的度数运行相同的函数:
plf = power.law.fit(pure_deg, impelementation = "plfit")
其中,pure_deg 是:
21 7 5 6 17 3 6 6 2 5 4 3 7 4 3 2 2 2 2 3 2 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
这导致输出:
$continuous
[1] FALSE
$alpha
[1] 2.362445
$xmin
[1] 1
$logLik
[1] -114.6303
$KS.stat
[1] 0.02293443
$KS.p
[1] 1
最佳答案
Colin Gillespie 在 R 中有一个名为 powerRlaw 的包。这个包有很好的文档,包含很多使用每个功能的例子。非常简单。
http://cran.r-project.org/web/packages/poweRlaw/
例如,如文档所述,在 R 中,以下代码从文件 full_path_of_file_name 获取数据并估计 xmin 和 alpha,并按照 Clauset and al. (2009) 的建议获取 p 值
library("poweRLaw")
words = read.table(<full_path_of_file_name>)
m_plwords = displ$new(words$V1) # discrete power law fitting
est_plwords = estimate_xmin(m_plwords) # get xmin and alpha
# here we have the goodness-of-fit test p-value
# as proposed by Clauset and al. (2009)
bs_p = bootstrap_p(m_plwords)
关于r - R 中幂律分布的拟合优度检验,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21541240/
这是我第一次提问,对于任何格式问题或任何让我难以回答的问题,我深表歉意。请让我知道我需要添加什么才能回答问题。 我正在尝试比较 2 个不相等的组大小(一个 ~ 97,另一个 ~ 714)之间的差异。差
这个问题在这里已经有了答案: dplyr summarize across ttest (1 个回答) 关闭 5 个月前。 我有这样的数据框 X1 X2 X3 X4 X5 class 1 1
我正在尝试对数据框中的两个数据子集运行 wilcox.test()。它们的长度不相等(48 对 260)。我想看看活橡树和水橡树的 dbh(胸高直径)是否存在差异。 Pine_stand 并收到该错
我有一个带有两个级别的因子列和许多数字列的数据框。我想按因子列拆分数据帧并对列对进行 t 检验。 使用示例数据集 Puromycin 我希望结果看起来像这样: Variable Treated
我尝试对数据框的所有列(一次两列)进行 t 检验,并仅提取 p 值。这是我想出的: for (i in c(5:525) ) { t_test_p.value =sapply( Data[5:525]
我有一个有 11 列数据的 Pandas 。我想通过测试将每一列与其他每一列进行比较(见下文)。如何创建一个循环来自动比较所有列,而无需为每个列对组合手动编写代码? from scipy.stats
我有一些数据,如下所示: # Groups: date [4] date data 1 2021-01-31 2 20
这就是我的数据的样子: > dput(data) structure(list(Name = c("Mark", "Tere", "Marcus", "Heidi", "Georg", "Tieme"
我有一个有 11 列数据的 Pandas 。我想通过测试将每一列与其他每一列进行比较(见下文)。如何创建一个循环来自动比较所有列,而无需为每个列对组合手动编写代码? from scipy.stats
我有一些数据,如下所示: # Groups: date [4] date data 1 2021-01-31 2 20
所以我有一些股票价格数据,我想测试价格是否遵循对数正态分布。我的代码如下: import scipy.stats as stats print(stats.kstest(df['DJIA'], "lo
我想对我的固定效应回归系数进行简单的联合 Wald 检验,但我想将限制设置为非零值。更具体地说,我想测试:H0: ai=0 and b=1 for every i或者基本上,是否从固定效应模型 (ai
我正在尝试进行双样本 t 检验,以检查两个数据集之间的均值是否存在显着差异。 我有两个数据集,每个数据集有 5 个试验,每个试验有 3 个特征。每个 Trial 都有不同的唯一标签,但 3 个特征(X
考虑以下虚拟数据: x <- rnorm(15,mean = 3,sd = 1) y <- rnorm(15,mean = 3,sd = 1) xy <- c(x,y) factor <- c(rep
我是一名计算机科学专业的学生,我正在自学算法类(class)。 在类(class)中我看到了这个问题: Show an efficient randomized algorithm to fact
我想使用拟合我的数据的 f 检验来比较两个模型。对于每个模型,我都执行了蒙特卡洛模拟,为每个模型参数和均方根拟合误差提供了统计估计。我想在 R 中使用 f-test 来确定哪个模型更可取。 最佳答案
我很难让 ks.test 使用卡方分布式数据: > chi10 ks.test(chi10, dchisq, df=10) One-sample Kolmogorov-Smirnov tes
我试图在 R 中复制 SPSS 的线性判别分析输出,但我很难找到执行 m-box 测试的方法。 我唯一找到的是一些发布在论坛上的代码,用于手动实现该过程,但我想知道语言本身是否已经包含用于此目的的任何
我有以下数据框: structure(list(test1 = c(0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1), test2 = c(0, 0, 1, 1, 0,
标准 stats::kruskal.test 模块允许计算数据集上的 kruskal-wallis 测试: >>> data(diamonds) >>> kruskal.test(price~cara
我是一名优秀的程序员,十分优秀!