- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试探索“__ldg 内在”。我已经阅读了 NVIDIA 的文档,但在其使用和实现方面没有得到任何令人满意的答案。此外引用THIS我尝试在一个简单的 1024*1024 矩阵乘法示例中实现 __ldg。
#include<stdio.h>
#include<stdlib.h>
__global__ void matrix_mul(float * ad,float * bd,float * cd,int N)
{
float pvalue=0;
//find Row and Column corresponding to a data element for each thread
int Row = blockIdx.y * blockDim.y + threadIdx.y;
int Col = blockIdx.x * blockDim.x + threadIdx.x;
//calculate dot product of Row of First Matrix and Column of Second Matrix
for(int i=0;i< N;++i)
{
// I tried with executing this first:
float m=__ldg(&ad[Row * N+i]);
float n=__ldg(&bd[i * N + Col]);
//Then I executed this as a normal execution:
// float m = ad[Row * N+i];
// float n = bd[i * N + Col];
pvalue += m * n;
}
//store dot product at corresponding position in resultant Matrix
cd[Row * N + Col] = pvalue;
}
int main()
{
int N = 1024,i,j; //N == size of square matrix
float *a,*b;
float *ad,*bd,*cd,*c;
//open a file for outputting the result
FILE *f;
f=fopen("Parallel Multiply_ldg.txt","w");
size_t size=sizeof(float)* N * N;
//allocate host side memory
a=(float*)malloc(size);
b=(float*)malloc(size);
c=(float*)malloc(size);
for(i=0;i<N;i++)
{
for(j=0;j<N;j++)
{
a[i*N+j]=2.0; //(float)(i*N+j); //initializing each value with its own index
b[i*N+j]=1.0; //(float)(i*N+j); //random functions can be used alternatively
}
}
//allocate device memory
cudaMalloc(&ad,size);
//printf("\nAfter cudaMalloc for ad\n%s\n",cudaGetErrorString(cudaGetLastError()));
cudaMalloc(&bd,size);
//printf("\nAfter cudaMalloc bd\n%s\n",cudaGetErrorString(cudaGetLastError()));
cudaMalloc(&cd,size);
//printf("\nAfter cudaMalloc cd\n%s\n",cudaGetErrorString(cudaGetLastError()));
//copy value from host to device
cudaMemcpy(ad,a,size,cudaMemcpyHostToDevice);
cudaMemcpy(bd,b,size,cudaMemcpyHostToDevice);
printf("\nAfter HostToDevice Memcpy\n%s\n",cudaGetErrorString(cudaGetLastError()));
//calculate execution configuration
dim3 blocksize(16,16); //each block contains 16 * 16 (=256) threads
dim3 gridsize(N/16,N/16); //creating just sufficient no of blocks
//GPU timer code
float time;
cudaEvent_t start,stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start,0);
matrix_mul <<< gridsize, blocksize >>> (ad,bd,cd, N);
cudaDeviceSynchronize();
cudaEventRecord(stop,0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time,start,stop); //time taken in kernel call calculated
cudaEventDestroy(start);
cudaEventDestroy(stop);
//copy back results
cudaMemcpy(c,cd,sizeof(float)* N*N,cudaMemcpyDeviceToHost);
printf("\nAfter DeviceToHost Memcpy\n%s\n",cudaGetErrorString(cudaGetLastError()));
//output results in output_file
fprintf(f,"Array A was---\n");
for(i=0;i<N;i++)
{
for(j=0;j<N;j++)
fprintf(f,"%f ",a[i*N+j]);
fprintf(f,"\n");
}
fprintf(f,"\nArray B was---\n");
for(i=0;i<N;i++)
{
for(j=0;j<N;j++)
fprintf(f,"%f ",b[i*N+j]);
fprintf(f,"\n");
}
fprintf(f,"\nMultiplication of A and B gives C----\n");
for(i=0;i<N;i++)
{
for(j=0;j<N;j++)
fprintf(f,"%f ",c[i*N+j]); //if correctly computed, then all values must be N
fprintf(f,"\n");
}
printf("\nYou can see output in Parallel Mutiply.txt file in project directory");
printf("\n\nTime taken is %f (ms)\n",time);
fprintf(f,"\n\nTime taken is %f (ms)\n",time);
fclose(f);
cudaThreadExit();
//cudaFree(ad); cudaFree(bd); cudaFree (cd);
free(a);free(b);free(c);
//_getch();
return 1;
}
Time taken is 0.014432 (ms)
Time taken is 36.858398 (ms)
最佳答案
Global memory accesses for devices of compute capability 3.x are cached in L2 and for devices of compute capability 3.5, may also be cached in the read-only data cache described in the previous section; they are not cached in L1.
Data that is read-only for the entire lifetime of the kernel can also be cached in the read-only data cache described in the previous section by reading it using the
__ldg()
function (see Read-Only Data Cache Load Function). When the compiler detects that the read-only condition is satisfied for some data, it will use__ldg()
to read it. The compiler might not always be able to detect that the read-only condition is satisfied for some data. Marking pointers used for loading such data with both theconst
and__restrict__
qualifiers increases the likelihood that the compiler will detect the read-only condition.
关于cuda - __ldg() 内在执行和正常执行之间有什么区别?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/26603188/
我正在尝试探索“__ldg 内在”。我已经阅读了 NVIDIA 的文档,但在其使用和实现方面没有得到任何令人满意的答案。此外引用THIS我尝试在一个简单的 1024*1024 矩阵乘法示例中实现 __
我昨天已经发布了这个问题,但没有得到很好的反响,虽然我现在有可靠的复现,请多多包涵。以下是系统规范: 配备 331.67 驱动器的 Tesla K20m, CUDA 6.0, Linux 机器。 现在
我的目标是在我的应用程序中利用缓存内存,搜索在线示例表明使用 __ldg 应该相对简单。 NVIDIA 有关于 GPU 优化的文档(可在此处找到:https://www.olcf.ornl.gov/w
我是一名优秀的程序员,十分优秀!