- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我在 Stack Overflow 上多次看到成对或一般成对的简单线性回归。这是此类问题的玩具数据集。
set.seed(0)
X <- matrix(runif(100), 100, 5, dimnames = list(1:100, LETTERS[1:5]))
b <- c(1, 0.7, 1.3, 2.9, -2)
dat <- X * b[col(X)] + matrix(rnorm(100 * 5, 0, 0.1), 100, 5)
dat <- as.data.frame(dat)
pairs(dat)
----- A ~ B A ~ C A ~ D A ~ E
B ~ A ----- B ~ C B ~ D B ~ E
C ~ A C ~ B ----- C ~ D C ~ E
D ~ A D ~ B D ~ C ----- D ~ E
E ~ A E ~ B E ~ C E ~ D -----
poor <- function (dat) {
n <- nrow(dat)
p <- ncol(dat)
## all formulae
LHS <- rep(colnames(dat), p)
RHS <- rep(colnames(dat), each = p)
## function to fit and summarize a single model
fitmodel <- function (LHS, RHS) {
if (RHS == LHS) {
z <- data.frame("LHS" = LHS, "RHS" = RHS,
"alpha" = 0,
"beta" = 1,
"beta.se" = 0,
"beta.tv" = Inf,
"beta.pv" = 0,
"sig" = 0,
"R2" = 1,
"F.fv" = Inf,
"F.pv" = 0,
stringsAsFactors = FALSE)
} else {
result <- summary(lm(reformulate(RHS, LHS), data = dat))
z <- data.frame("LHS" = LHS, "RHS" = RHS,
"alpha" = result$coefficients[1, 1],
"beta" = result$coefficients[2, 1],
"beta.se" = result$coefficients[2, 2],
"beta.tv" = result$coefficients[2, 3],
"beta.pv" = result$coefficients[2, 4],
"sig" = result$sigma,
"R2" = result$r.squared,
"F.fv" = result$fstatistic[[1]],
"F.pv" = pf(result$fstatistic[[1]], 1, n - 2, lower.tail = FALSE),
stringsAsFactors = FALSE)
}
z
}
## loop through all models
do.call("rbind.data.frame", c(Map(fitmodel, LHS, RHS),
list(make.row.names = FALSE,
stringsAsFactors = FALSE)))
}
reformulate
),拟合回归(
lm
),做总结
summary
, 返回所有统计信息和
rbind
它们是一个数据框。
p
呢?变量?然后我们需要做
p * (p - 1)
回归!
cbind(B, C, D, E) ~ A
p * (p - 1)
的回归次数至
p
.
lm
的情况下做得更好。和
summary
.这是我之前的尝试:
Is there a fast estimation of simple regression (a regression line with only intercept and slope)? .它很快,因为它使用变量之间的协方差进行估计,例如求解
normal equation .但是
simpleLM
功能非常有限:
p * (p - 1)
成对回归设置中的时间)。 pairwise_simpleLM
将其推广到快速成对回归吗? ?
A
,
B
,
C
和 RHS 变量
D
,
E
,即拟合 6 条简单的线性回归线:
A ~ D A ~ E
B ~ D B ~ E
C ~ D C ~ E
cbind(A, B, C, D) ~ E
.
A ~ B A ~ C A ~ D A ~ E
general_paired_simpleLM
为了这?
最佳答案
一些统计结果/背景
(图片中的链接:Function to calculate R2 (R-squared) in R)
计算细节
这里涉及的计算基本上是方差-协方差矩阵的计算。一旦我们有了它,所有成对回归的结果就是逐元素矩阵算术。
方差-协方差矩阵可以通过 R 函数 cov
获得,但函数低于 compute it manually using crossprod
。优点是,如果您拥有优化的 BLAS 库,它显然可以受益。请注意,以这种方式进行了大量的简化。 R 函数 cov
有参数 use
允许处理 NA
,但 crossprod
没有。我假设您的 dat
根本没有缺失值!如果确实有缺失值,请使用 na.omit(dat)
自行删除它们。
将数据帧转换为矩阵的初始 as.matrix
可能是开销。原则上,如果我用 C/C++ 编写所有代码,我可以消除这种强制。事实上,许多逐元素矩阵矩阵算法可以合并到一个循环嵌套中。但是,我现在真的很烦这样做(因为我没有时间)。
有些人可能会争辩说最终返回的格式不方便。可能还有其他格式:
split.data.frame
。
pairwise_simpleLM
pairwise_simpleLM <- function (dat) {
## matrix and its dimension (n: numbeta.ser of data; p: numbeta.ser of variables)
dat <- as.matrix(dat)
n <- nrow(dat)
p <- ncol(dat)
## variable summary: mean, (unscaled) covariance and (unscaled) variance
m <- colMeans(dat)
V <- crossprod(dat) - tcrossprod(m * sqrt(n))
d <- diag(V)
## R-squared (explained variance) and its complement
R2 <- (V ^ 2) * tcrossprod(1 / d)
R2_complement <- 1 - R2
R2_complement[seq.int(from = 1, by = p + 1, length = p)] <- 0
## slope and intercept
beta <- V * rep(1 / d, each = p)
alpha <- m - beta * rep(m, each = p)
## residual sum of squares and standard error
RSS <- R2_complement * d
sig <- sqrt(RSS * (1 / (n - 2)))
## statistics for slope
beta.se <- sig * rep(1 / sqrt(d), each = p)
beta.tv <- beta / beta.se
beta.pv <- 2 * pt(abs(beta.tv), n - 2, lower.tail = FALSE)
## F-statistic and p-value
F.fv <- (n - 2) * R2 / R2_complement
F.pv <- pf(F.fv, 1, n - 2, lower.tail = FALSE)
## export
data.frame(LHS = rep(colnames(dat), times = p),
RHS = rep(colnames(dat), each = p),
alpha = c(alpha),
beta = c(beta),
beta.se = c(beta.se),
beta.tv = c(beta.tv),
beta.pv = c(beta.pv),
sig = c(sig),
R2 = c(R2),
F.fv = c(F.fv),
F.pv = c(F.pv),
stringsAsFactors = FALSE)
}
oo <- poor(dat)
rr <- pairwise_simpleLM(dat)
all.equal(oo, rr)
#[1] TRUE
rr[1:3, ]
# LHS RHS alpha beta beta.se beta.tv beta.pv sig
#1 A A 0.00000000 1.0000000 0.00000000 Inf 0.000000e+00 0.0000000
#2 B A 0.05550367 0.6206434 0.04456744 13.92594 5.796437e-25 0.1252402
#3 C A 0.05809455 1.2215173 0.04790027 25.50126 4.731618e-45 0.1346059
# R2 F.fv F.pv
#1 1.0000000 Inf 0.000000e+00
#2 0.6643051 193.9317 5.796437e-25
#3 0.8690390 650.3142 4.731618e-45
library(microbenchmark)
microbenchmark("poor_man's" = poor(dat), "fast" = pairwise_simpleLM(dat))
#Unit: milliseconds
# expr min lq mean median uq max
# poor_man's 127.270928 129.060515 137.813875 133.390722 139.029912 216.24995
# fast 2.732184 3.025217 3.381613 3.134832 3.313079 10.48108
set.seed(0)
X <- matrix(runif(100), 100, 10, dimnames = list(1:100, LETTERS[1:10]))
b <- runif(10)
DAT <- X * b[col(X)] + matrix(rnorm(100 * 10, 0, 0.1), 100, 10)
DAT <- as.data.frame(DAT)
microbenchmark("poor_man's" = poor(DAT), "fast" = pairwise_simpleLM(DAT))
#Unit: milliseconds
# expr min lq mean median uq max
# poor_man's 548.949161 551.746631 573.009665 556.307448 564.28355 801.645501
# fast 3.365772 3.578448 3.721131 3.621229 3.77749 6.791786
general_paired_simpleLM
general_paired_simpleLM <- function (dat_LHS, dat_RHS) {
## matrix and its dimension (n: numbeta.ser of data; p: numbeta.ser of variables)
dat_LHS <- as.matrix(dat_LHS)
dat_RHS <- as.matrix(dat_RHS)
if (nrow(dat_LHS) != nrow(dat_RHS)) stop("'dat_LHS' and 'dat_RHS' don't have same number of rows!")
n <- nrow(dat_LHS)
pl <- ncol(dat_LHS)
pr <- ncol(dat_RHS)
## variable summary: mean, (unscaled) covariance and (unscaled) variance
ml <- colMeans(dat_LHS)
mr <- colMeans(dat_RHS)
vl <- colSums(dat_LHS ^ 2) - ml * ml * n
vr <- colSums(dat_RHS ^ 2) - mr * mr * n
##V <- crossprod(dat - rep(m, each = n)) ## cov(u, v) = E[(u - E[u])(v - E[v])]
V <- crossprod(dat_LHS, dat_RHS) - tcrossprod(ml * sqrt(n), mr * sqrt(n)) ## cov(u, v) = E[uv] - E{u]E[v]
## R-squared (explained variance) and its complement
R2 <- (V ^ 2) * tcrossprod(1 / vl, 1 / vr)
R2_complement <- 1 - R2
## slope and intercept
beta <- V * rep(1 / vr, each = pl)
alpha <- ml - beta * rep(mr, each = pl)
## residual sum of squares and standard error
RSS <- R2_complement * vl
sig <- sqrt(RSS * (1 / (n - 2)))
## statistics for slope
beta.se <- sig * rep(1 / sqrt(vr), each = pl)
beta.tv <- beta / beta.se
beta.pv <- 2 * pt(abs(beta.tv), n - 2, lower.tail = FALSE)
## F-statistic and p-value
F.fv <- (n - 2) * R2 / R2_complement
F.pv <- pf(F.fv, 1, n - 2, lower.tail = FALSE)
## export
data.frame(LHS = rep(colnames(dat_LHS), times = pr),
RHS = rep(colnames(dat_RHS), each = pl),
alpha = c(alpha),
beta = c(beta),
beta.se = c(beta.se),
beta.tv = c(beta.tv),
beta.pv = c(beta.pv),
sig = c(sig),
R2 = c(R2),
F.fv = c(F.fv),
F.pv = c(F.pv),
stringsAsFactors = FALSE)
}
general_paired_simpleLM(dat[1:3], dat[4:5])
# LHS RHS alpha beta beta.se beta.tv beta.pv sig
#1 A D -0.009212582 0.3450939 0.01171768 29.45071 1.772671e-50 0.09044509
#2 B D 0.012474593 0.2389177 0.01420516 16.81908 1.201421e-30 0.10964516
#3 C D -0.005958236 0.4565443 0.01397619 32.66585 1.749650e-54 0.10787785
#4 A E 0.008650812 -0.4798639 0.01963404 -24.44040 1.738263e-43 0.10656866
#5 B E 0.012738403 -0.3437776 0.01949488 -17.63426 3.636655e-32 0.10581331
#6 C E 0.009068106 -0.6430553 0.02183128 -29.45569 1.746439e-50 0.11849472
# R2 F.fv F.pv
#1 0.8984818 867.3441 1.772671e-50
#2 0.7427021 282.8815 1.201421e-30
#3 0.9158840 1067.0579 1.749650e-54
#4 0.8590604 597.3333 1.738263e-43
#5 0.7603718 310.9670 3.636655e-32
#6 0.8985126 867.6375 1.746439e-50
general_paired_simpleLM(dat[1:4], dat[5])
# LHS RHS alpha beta beta.se beta.tv beta.pv sig
#1 A E 0.008650812 -0.4798639 0.01963404 -24.44040 1.738263e-43 0.1065687
#2 B E 0.012738403 -0.3437776 0.01949488 -17.63426 3.636655e-32 0.1058133
#3 C E 0.009068106 -0.6430553 0.02183128 -29.45569 1.746439e-50 0.1184947
#4 D E 0.066190196 -1.3767586 0.03597657 -38.26820 9.828853e-61 0.1952718
# R2 F.fv F.pv
#1 0.8590604 597.3333 1.738263e-43
#2 0.7603718 310.9670 3.636655e-32
#3 0.8985126 867.6375 1.746439e-50
#4 0.9372782 1464.4551 9.828853e-61
general_paired_simpleLM(dat[1], dat[2:5])
# LHS RHS alpha beta beta.se beta.tv beta.pv sig
#1 A B 0.112229318 1.0703491 0.07686011 13.92594 5.796437e-25 0.16446951
#2 A C 0.025628210 0.7114422 0.02789832 25.50126 4.731618e-45 0.10272687
#3 A D -0.009212582 0.3450939 0.01171768 29.45071 1.772671e-50 0.09044509
#4 A E 0.008650812 -0.4798639 0.01963404 -24.44040 1.738263e-43 0.10656866
# R2 F.fv F.pv
#1 0.6643051 193.9317 5.796437e-25
#2 0.8690390 650.3142 4.731618e-45
#3 0.8984818 867.3441 1.772671e-50
#4 0.8590604 597.3333 1.738263e-43
general_paired_simpleLM(dat[1], dat[2])
# LHS RHS alpha beta beta.se beta.tv beta.pv sig
#1 A B 0.1122293 1.070349 0.07686011 13.92594 5.796437e-25 0.1644695
# R2 F.fv F.pv
#1 0.6643051 193.9317 5.796437e-25
simpleLM
函数现在已过时。
Denote our variables by $x_1$, $x_2$, etc, a pairwise simple linear regression takes the form $$x_i = \alpha_{ij} + \beta_{ij}x_j$$ where $\alpha_{ij}$ and $\beta_{ij}$ is the intercept and the slope of $x_i \sim x_j$, respectively. We also denote $m_i$ and $v_i$ as the sample mean and **unscaled** sample variance of $x_i$. Here, the unscaled variance is just the sum of squares without dividing by sample size, that is $v_i = \sum_{k = 1}^n(x_{ik} - m_i)^2 = (\sum_{k = 1}^nx_{ik}^2) - n m_i^2$. We also denote $V_{ij}$ as the **unscaled** covariance between $x_i$ and $x_j$: $V_{ij} = \sum_{k = 1}^n(x_{ik} - m_i)(x_{jk} - m_j)$ = $(\sum_{k = 1}^nx_{ik}x_{jk}) - nm_im_j$.
Using the results for a simple linear regression given in [Function to calculate R2 (R-squared) in R](https://stackoverflow.com/a/40901487/4891738), we have $$\beta_{ij} = V_{ij} \ / \ v_j,\quad \alpha_{ij} = m_i - \beta_{ij}m_j,\quad r_{ij}^2 = V_{ij}^2 \ / \ (v_iv_j),$$ where $r_{ij}^2$ is the R-squared. Knowing $r_{ij}^2 = RSS_{ij} \ / \ TSS_{ij}$ where $RSS_{ij}$ and $TSS_{ij} = v_i$ are residual sum of squares and total sum of squares of $x_i \sim x_j$, we can derive $RSS_{ij}$ and residual standard error $\sigma_{ij}$ **without actually computing residuals**: $$RSS_{ij} = (1 - r_{ij}^2)v_i,\quad \sigma_{ij} = \sqrt{RSS_{ij} \ / \ (n - 2)}.$$
F-statistic $F_{ij}$ and associated p-value $p_{ij}^F$ can also be obtained from sum of squares: $$F_{ij} = \tfrac{(TSS_{ij} - RSS_{ij}) \ / \ 1}{RSS_{ij} \ / \ (n - 2)} = (n - 2) r_{ij}^2 \ / \ (1 - r_{ij}^2),\quad p_{ij}^F = 1 - \texttt{CDF_F}(F_{ij};\ 1,\ n - 2),$$ where $\texttt{CDF_F}$ denotes the CDF of F-distribution.
The only thing left is the standard error $e_{ij}$, t-statistic $t_{ij}$ and associated p-value $p_{ij}^t$ for $\beta_{ij}$, which are $$e_{ij} = \sigma_{ij} \ / \ \sqrt{v_i},\quad t_{ij} = \beta_{ij} \ / \ e_{ij},\quad p_{ij}^t = 2 * \texttt{CDF_t}(-|t_{ij}|; \ n - 2),$$ where $\texttt{CDF_t}$ denotes the CDF of t-distribution.
关于r - 数据框中变量之间的快速成对简单线性回归,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51953709/
初学者 android 问题。好的,我已经成功写入文件。例如。 //获取文件名 String filename = getResources().getString(R.string.filename
我已经将相同的图像保存到/data/data/mypackage/img/中,现在我想显示这个全屏,我曾尝试使用 ACTION_VIEW 来显示 android 标准程序,但它不是从/data/dat
我正在使用Xcode 9,Swift 4。 我正在尝试使用以下代码从URL在ImageView中显示图像: func getImageFromUrl(sourceUrl: String) -> UII
我的 Ubuntu 安装 genymotion 有问题。主要是我无法调试我的数据库,因为通过 eclipse 中的 DBMS 和 shell 中的 adb 我无法查看/data/文件夹的内容。没有显示
我正在尝试用 PHP 发布一些 JSON 数据。但是出了点问题。 这是我的 html -- {% for x in sets %}
我观察到两种方法的结果不同。为什么是这样?我知道 lm 上发生了什么,但无法弄清楚 tslm 上发生了什么。 > library(forecast) > set.seed(2) > tts lm(t
我不确定为什么会这样!我有一个由 spring data elasticsearch 和 spring data jpa 使用的类,但是当我尝试运行我的应用程序时出现错误。 Error creatin
在 this vega 图表,如果我下载并转换 flare-dependencies.json使用以下 jq 到 csv命令, jq -r '(map(keys) | add | unique) as
我正在提交一个项目,我必须在其中创建一个带有表的 mysql 数据库。一切都在我这边进行,所以我只想检查如何将我所有的压缩文件发送给使用不同计算机的人。基本上,我如何为另一台计算机创建我的数据库文件,
我有一个应用程序可以将文本文件写入内部存储。我想仔细看看我的电脑。 我运行了 Toast.makeText 来显示路径,它说:/数据/数据/我的包 但是当我转到 Android Studio 的 An
我喜欢使用 Genymotion 模拟器以如此出色的速度加载 Android。它有非常好的速度,但仍然有一些不稳定的性能。 如何从 Eclipse 中的文件资源管理器访问 Genymotion 模拟器
我需要更改 Silverlight 中文本框的格式。数据通过 MVVM 绑定(bind)。 例如,有一个 int 属性,我将 1 添加到 setter 中的值并调用 OnPropertyChanged
我想向 Youtube Data API 提出请求,但我不需要访问任何用户信息。我只想浏览公共(public)视频并根据搜索词显示视频。 我可以在未经授权的情况下这样做吗? 最佳答案 YouTube
我已经设置了一个 Twilio 应用程序,我想向人们发送更新,但我不想回复单个文本。我只是想让他们在有问题时打电话。我一切正常,但我想在发送文本时显示传入文本,以确保我不会错过任何问题。我正在使用 p
我有一个带有表单的网站(目前它是纯 HTML,但我们正在切换到 JQuery)。流程是这样的: 接受用户的输入 --- 5 个整数 通过 REST 调用网络服务 在服务器端运行一些计算...并生成一个
假设我们有一个名为 configuration.js 的文件,当我们查看内部时,我们会看到: 'use strict'; var profile = { "project": "%Projec
这部分是对 Previous Question 的扩展我的: 我现在可以从我的 CI Controller 成功返回 JSON 数据,它返回: {"results":[{"id":"1","Sourc
有什么有效的方法可以删除 ios 中 CBL 的所有文档存储?我对此有疑问,或者,如果有人知道如何从本质上使该应用程序像刚刚安装一样,那也会非常有帮助。我们正在努力确保我们的注销实际上将应用程序设置为
我有一个 Rails 应用程序,它与其他 Rails 应用程序通信以进行数据插入。我使用 jQuery $.post 方法进行数据插入。对于插入,我的其他 Rails 应用程序显示 200 OK。但在
我正在为服务于发布请求的 API 调用运行单元测试。我正在传递请求正文,并且必须将响应作为帐户数据返回。但我只收到断言错误 注意:数据是从 Azure 中获取的 spec.js const accou
我是一名优秀的程序员,十分优秀!