gpt4 book ai didi

r - 具有重复列名的整洁 data.frame

转载 作者:行者123 更新时间:2023-12-04 02:04:30 25 4
gpt4 key购买 nike

我有一个程序可以提供这种格式的数据

toy
file_path Condition Trial.Num A B C ID A B C ID A B C ID
1 root/some.extension Baseline 1 2 3 5 car 2 1 7 bike 4 9 0 plane
2 root/thing.extension Baseline 2 3 6 45 car 5 4 4 bike 9 5 4 plane
3 root/else.extension Baseline 3 4 4 6 car 7 5 4 bike 68 7 56 plane
4 root/uniquely.extension Treatment 1 5 3 7 car 1 7 37 bike 9 8 7 plane
5 root/defined.extension Treatment 2 6 7 3 car 4 6 8 bike 9 0 8 plane

我的目标 是将格式整理成至少可以更容易最终整理具有唯一列名的 reshape
tidy_toy
file_path Condition Trial.Num A B C ID
1 root/some.extension Baseline 1 2 3 5 car
2 root/thing.extension Baseline 2 3 6 45 car
3 root/else.extension Baseline 3 4 4 6 car
4 root/uniquely.extension Treatment 1 5 3 7 car
5 root/defined.extension Treatment 2 6 7 3 car
6 root/some.extension Baseline 1 2 1 7 bike
7 root/thing.extension Baseline 2 5 4 4 bike
8 root/else.extension Baseline 3 7 5 4 bike
9 root/uniquely.extension Treatment 1 1 7 37 bike
10 root/defined.extension Treatment 2 4 6 8 bike
11 root/some.extension Baseline 1 4 9 0 plane
12 root/thing.extension Baseline 2 9 5 4 plane
13 root/else.extension Baseline 3 68 7 56 plane
14 root/uniquely.extension Treatment 1 9 8 7 plane
15 root/defined.extension Treatment 2 9 0 8 plane

如果我尝试 melt来自 toy它不起作用,因为只有第一个 ID 列将用于 id.vars (因此一切都会被标记为汽车)。相同的变量将被删除。

这是两个表的 dput
   structure(list(file_path = structure(c(3L, 4L, 2L, 5L, 1L), .Label = c("root/defined.extension", 
"root/else.extension", "root/some.extension", "root/thing.extension",
"root/uniquely.extension"), class = "factor"), Condition = structure(c(1L,
1L, 1L, 2L, 2L), .Label = c("Baseline", "Treatment"), class = "factor"),
Trial.Num = c(1L, 2L, 3L, 1L, 2L), A = 2:6, B = c(3L, 6L,
4L, 3L, 7L), C = c(5L, 45L, 6L, 7L, 3L), ID = structure(c(1L,
1L, 1L, 1L, 1L), .Label = "car", class = "factor"), A = c(2L,
5L, 7L, 1L, 4L), B = c(1L, 4L, 5L, 7L, 6L), C = c(7L, 4L,
4L, 37L, 8L), ID = structure(c(1L, 1L, 1L, 1L, 1L), .Label = "bike", class = "factor"),
A = c(4L, 9L, 68L, 9L, 9L), B = c(9L, 5L, 7L, 8L, 0L), C = c(0L,
4L, 56L, 7L, 8L), ID = structure(c(1L, 1L, 1L, 1L, 1L), .Label = "plane", class = "factor")), .Names = c("file_path",
"Condition", "Trial.Num", "A", "B", "C", "ID", "A", "B", "C",
"ID", "A", "B", "C", "ID"), class = "data.frame", row.names = c(NA,
-5L))


structure(list(file_path = structure(c(3L, 4L, 2L, 5L, 1L, 3L,
4L, 2L, 5L, 1L, 3L, 4L, 2L, 5L, 1L), .Label = c("root/defined.extension",
"root/else.extension", "root/some.extension", "root/thing.extension",
"root/uniquely.extension"), class = "factor"), Condition = structure(c(1L,
1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L), .Label = c("Baseline",
"Treatment"), class = "factor"), Trial.Num = c(1L, 2L, 3L, 1L,
2L, 1L, 2L, 3L, 1L, 2L, 1L, 2L, 3L, 1L, 2L), A = c(2L, 3L, 4L,
5L, 6L, 2L, 5L, 7L, 1L, 4L, 4L, 9L, 68L, 9L, 9L), B = c(3L, 6L,
4L, 3L, 7L, 1L, 4L, 5L, 7L, 6L, 9L, 5L, 7L, 8L, 0L), C = c(5L,
45L, 6L, 7L, 3L, 7L, 4L, 4L, 37L, 8L, 0L, 4L, 56L, 7L, 8L), ID = structure(c(2L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L), .Label = c("bike",
"car", "plane"), class = "factor")), .Names = c("file_path",
"Condition", "Trial.Num", "A", "B", "C", "ID"), class = "data.frame", row.names = c(NA,
-15L))

最佳答案

您可以使用 make.unique - 函数来创建唯一的列名。之后您可以使用 melt来自 data.table -package 能够基于 patterns 创建多个值列在列名中:

# make the column names unique
names(toy) <- make.unique(names(toy))
# let the 'Condition' column start with a small letter 'c'
# so it won't be detected by the patterns argument from melt
names(toy)[2] <- tolower(names(toy)[2])

# load the 'data.table' package
library(data.table)
# tidy the data into long format
tidy_toy <- melt(setDT(toy),
measure.vars = patterns('^A','^B','^C','^ID'),
value.name = c('A','B','C','ID'))

这给出:
 > tidy_toy
file_path condition Trial.Num variable A B C ID
1: root/some.extension Baseline 1 1 2 3 5 car
2: root/thing.extension Baseline 2 1 3 6 45 car
3: root/else.extension Baseline 3 1 4 4 6 car
4: root/uniquely.extension Treatment 1 1 5 3 7 car
5: root/defined.extension Treatment 2 1 6 7 3 car
6: root/some.extension Baseline 1 2 2 1 7 bike
7: root/thing.extension Baseline 2 2 5 4 4 bike
8: root/else.extension Baseline 3 2 7 5 4 bike
9: root/uniquely.extension Treatment 1 2 1 7 37 bike
10: root/defined.extension Treatment 2 2 4 6 8 bike
11: root/some.extension Baseline 1 3 4 9 0 plane
12: root/thing.extension Baseline 2 3 9 5 4 plane
13: root/else.extension Baseline 3 3 68 7 56 plane
14: root/uniquely.extension Treatment 1 3 9 8 7 plane
15: root/defined.extension Treatment 2 3 9 0 8 plane

另一种选择是使用 measure.vars 的列索引列表。 :
tidy_toy <- melt(setDT(toy), 
measure.vars = list(c(4,8,12), c(5,9,13), c(6,10,14), c(7,11,15)),
value.name = c('A','B','C','ID'))

那么不需要使列名唯一。

一种更复杂的方法,可以创建更易于区分的名称 patterns论点:
# select the names that are not unique
tt <- table(names(toy))
idx <- which(names(toy) %in% names(tt)[tt > 1])
nms <- names(toy)[idx]

# make them unique
names(toy)[idx] <- paste(nms,
rep(seq(length(nms) / length(names(tt)[tt > 1])),
each = length(names(tt)[tt > 1])),
sep = '.')

# your columnnames are now unique:
> names(toy)
[1] "file_path" "Condition" "Trial.Num" "A.1" "B.1" "C.1" "ID.1" "A.2"
[9] "B.2" "C.2" "ID.2" "A.3" "B.3" "C.3" "ID.3"

# tidy the data into long format
tidy_toy <- melt(setDT(toy),
measure.vars = patterns('^A.\\d','^B.\\d','^C.\\d','^ID.\\d'),
value.name = c('A','B','C','ID'))

这将给出相同的最终结果。

正如评论中提到的, janitor -package 也可以帮助解决这个问题。 clean_names()工作原理类似于 make.unique功能。 See here为解释。

关于r - 具有重复列名的整洁 data.frame,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41728439/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com