- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我发现自己处于以下情况:我手动触发了DAG Run(通过airflow trigger_dag datablocks_dag
)运行,并且Dag Run出现在界面中,但随后会一直保持“ Running”状态,而实际上并未执行任何操作。
当我在UI中检查此DAG Run时,看到以下内容:
我已将start_date
设置为datetime(2016, 1, 1)
,并且schedule_interval
设置为@once
。通过阅读文档,我的理解是,由于start_date
<现在,将触发DAG。 @once
确保它仅发生一次。
我的日志文件说:
[2017-07-11 21:32:05,359] {jobs.py:343} DagFileProcessor0 INFO - Started process (PID=21217) to work on /home/alex/Desktop/datablocks/tests/.airflow/dags/datablocks_dag.py
[2017-07-11 21:32:05,359] {jobs.py:534} DagFileProcessor0 ERROR - Cannot use more than 1 thread when using sqlite. Setting max_threads to 1
[2017-07-11 21:32:05,365] {jobs.py:1525} DagFileProcessor0 INFO - Processing file /home/alex/Desktop/datablocks/tests/.airflow/dags/datablocks_dag.py for tasks to queue
[2017-07-11 21:32:05,365] {models.py:176} DagFileProcessor0 INFO - Filling up the DagBag from /home/alex/Desktop/datablocks/tests/.airflow/dags/datablocks_dag.py
[2017-07-11 21:32:05,703] {models.py:2048} DagFileProcessor0 WARNING - schedule_interval is used for <Task(BashOperator): foo>, though it has been deprecated as a task parameter, you need to specify it as a DAG parameter instead
[2017-07-11 21:32:05,703] {models.py:2048} DagFileProcessor0 WARNING - schedule_interval is used for <Task(BashOperator): foo2>, though it has been deprecated as a task parameter, you need to specify it as a DAG parameter instead
[2017-07-11 21:32:05,704] {jobs.py:1539} DagFileProcessor0 INFO - DAG(s) dict_keys(['example_branch_dop_operator_v3', 'latest_only', 'tutorial', 'example_http_operator', 'example_python_operator', 'example_bash_operator', 'example_branch_operator', 'example_trigger_target_dag', 'example_short_circuit_operator', 'example_passing_params_via_test_command', 'test_utils', 'example_subdag_operator', 'example_subdag_operator.section-1', 'example_subdag_operator.section-2', 'example_skip_dag', 'example_xcom', 'example_trigger_controller_dag', 'latest_only_with_trigger', 'datablocks_dag']) retrieved from /home/alex/Desktop/datablocks/tests/.airflow/dags/datablocks_dag.py
[2017-07-11 21:32:07,083] {models.py:3529} DagFileProcessor0 INFO - Creating ORM DAG for datablocks_dag
[2017-07-11 21:32:07,234] {models.py:331} DagFileProcessor0 INFO - Finding 'running' jobs without a recent heartbeat
[2017-07-11 21:32:07,234] {models.py:337} DagFileProcessor0 INFO - Failing jobs without heartbeat after 2017-07-11 21:27:07.234388
[2017-07-11 21:32:07,240] {jobs.py:351} DagFileProcessor0 INFO - Processing /home/alex/Desktop/datablocks/tests/.airflow/dags/datablocks_dag.py took 1.881 seconds
start_date
的工作方式?
schedule_interval
WARNING
行可能是问题的根源?
最佳答案
问题是dag已暂停。
在您提供的屏幕截图中,将其翻转到On
,然后按此操作即可。
气流开始时,这是常见的“陷阱”。
关于airflow - Airflow DAG运行已触发,但从未执行?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45047059/
在Airflow中,我一直在使用“airflow run”和“airflow test”,但不完全理解它们有何不同。他们有什么区别? 最佳答案 我自己通读了文档,发现它是多么令人困惑。 Airflow
我使用 Airflow 已经有一段时间了,它是由一位同事创建的。最近我遇到了一些错误,这需要我更深入地了解如何修复 Airflow 中的某些问题。 我确实理解这三个进程是什么,但我只是不明白运行它们时
AIRFLOW_HOME=/path/to/my/airflow_home 我收到这个警告... >airflow trigger_dag python_dag3 /Users/alexryan/mi
有没有人报告过他们在他们的公司中让 Airflow 扩展了多少?我正在考虑实现 Airflow 来执行 5,000 多个任务,每个任务每小时运行一次,有一天可以将其扩展到 20,000 多个任务。在检
问题 :我想使用 Github 上最新版本的 Apache-Airflow 安装 apache-airflow 以及所有依赖项? 我怎样才能使用 pip 做到这一点? 在生产环境中使用它是否安全? 最
我们在 AWS ECS 上运行 Airflow,并将所有 DAG 捆绑在一个 Docker 镜像中。我们不时更新 DAGS,并部署新版本的 Docker Image。当我们这样做时,ECS 将终止正在
问题很简单。我需要限制 Airflow 网络用户仅查看和执行某些 DAG 和任务。 如果可能,我宁愿不使用 Kerberos也不是 OAuth . Multi-tenancy option 似乎是一个
我们正在使用 Airflow 2.00。我正在尝试实现一个做两件事的 DAG: 通过 API 触发报告 从源到目标下载报告。 任务 1 和任务 2 之间至少需要 2-3 小时的间隔。根据我的研究,我有
对于一项任务,有许多辅助任务 - 从文件/数据库中获取/保存属性、验证、审计。这些辅助方法并不耗时。 一个示例 DAG 流, fetch_data >> actual_processing >> va
有什么方法可以重新加载作业而不必重新启动服务器吗? 最佳答案 在airflow.cfg中,您具有以下两种配置来控制此行为: # after how much time a new DAGs shoul
我们可以通过将任务/dag 超时设置为 None 并手动触发其运行来使用 Airflow dag 来定义永无止境的作业(即具有无条件循环以消耗流数据的任务)吗?让 Airflow 监测永无止境的任务会
我是 Airflow 的新手,最近开始探索这个工具。我在 18.4 版本的 ubuntu 机器上安装了 1.10.10 版。从设置和安装的角度来看,一切正常,但是我在任何 DAG 中的任务都没有运行,
我主要看到Airflow被用于ETL / Bid数据相关的工作。我正在尝试将其用于业务工作流,其中用户操作将来会触发一组相关任务。其中某些任务可能需要根据某些其他用户操作来清除(删除)。 我认为最好的
我有一个 DAG,只要 FileSensor 检测到文件,它就会使用它,为每个文件生成任务,以 (1) 将文件移动到暂存区域,(2) 触发单独的 DAG 来处理文件。 FileSensor -> Mo
我需要手动或以编程方式执行的管道,可以使用 Airflow 吗?看起来现在每个工作流程都必须与时间表绑定(bind)。 最佳答案 只需在创建 DAG 时将 schedule_interval 设置为
所以这是一个愚蠢的想法...... 我在 Airflow 中创建了(许多)DAG...并且它有效...但是,我想以某种方式将其打包,以便我可以在不安装 Airflow 的情况下运行单个 DAG 运行;
我使用“pip install 'apache-airflow[statsd]' 安装了 airflow[statsd] 并安装了 statsd_exporter。现在我可以看到来自 Promethe
我们正在尝试将 MongoHook 和 GCSToLocalFilesystemOperator 导入到我们的 Airflow 项目中: docs for MongoHook docs for GCS
启动 Airflow 网络服务器时出现以下错误 balajee@Balajees-MacBook-Air.local:~$ Airflow 网络服务器 -p 8080 [2018-12-03 00:2
运行pip install airflow[postgres]命令后出现以下错误: > raise RuntimeError("By default one of Airflow's dependen
我是一名优秀的程序员,十分优秀!