- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在研究序列预测问题,但我在这方面没有太多经验,所以下面的一些问题可能很幼稚。
仅供引用:我创建了一个关注 CRF 的后续问题 here
我有以下问题:
我想预测多个非独立变量的二进制序列。
输入:
我有一个包含以下变量的数据集:
binary_signal_group_A
和
binary_signal_group_B
是我想使用(1)它们过去的行为和(2)从每个时间戳中提取的附加信息来预测的 2 个非独立变量。
# required libraries
import re
import numpy as np
import pandas as pd
from keras import Sequential
from keras.layers import LSTM
data_length = 18 # how long our data series will be
shift_length = 3 # how long of a sequence do we want
df = (pd.DataFrame # create a sample dataframe
.from_records(np.random.randint(2, size=[data_length, 3]))
.rename(columns={0:'a', 1:'b', 2:'extra'}))
# NOTE: the 'extra' variable refers to a generic predictor such as for example 'is_weekend' indicator, it doesn't really matter what it is
# shift so that our sequences are in rows (assuming data is sorted already)
colrange = df.columns
shift_range = [_ for _ in range(-shift_length, shift_length+1) if _ != 0]
for c in colrange:
for s in shift_range:
if not (c == 'extra' and s > 0):
charge = 'next' if s > 0 else 'last' # 'next' variables is what we want to predict
formatted_s = '{0:02d}'.format(abs(s))
new_var = '{var}_{charge}_{n}'.format(var=c, charge=charge, n=formatted_s)
df[new_var] = df[c].shift(s)
# drop unnecessary variables and trim missings generated by the shift operation
df.dropna(axis=0, inplace=True)
df.drop(colrange, axis=1, inplace=True)
df = df.astype(int)
df.head() # check it out
# a_last_03 a_last_02 ... extra_last_02 extra_last_01
# 3 0 1 ... 0 1
# 4 1 0 ... 0 0
# 5 0 1 ... 1 0
# 6 0 0 ... 0 1
# 7 0 0 ... 1 0
# [5 rows x 15 columns]
# separate predictors and response
response_df_dict = {}
for g in ['a','b']:
response_df_dict[g] = df[[c for c in df.columns if 'next' in c and g in c]]
# reformat for LSTM
# the response for every row is a matrix with depth of 2 (the number of groups) and width = shift_length
# the predictors are of the same dimensions except the depth is not 2 but the number of predictors that we have
response_array_list = []
col_prefix = set([re.sub('_\d+$','',c) for c in df.columns if 'next' not in c])
for c in col_prefix:
current_array = df[[z for z in df.columns if z.startswith(c)]].values
response_array_list.append(current_array)
# reshape into samples (1), time stamps (2) and channels/variables (0)
response_array = np.array([response_df_dict['a'].values,response_df_dict['b'].values])
response_array = np.reshape(response_array, (response_array.shape[1], response_array.shape[2], response_array.shape[0]))
predictor_array = np.array(response_array_list)
predictor_array = np.reshape(predictor_array, (predictor_array.shape[1], predictor_array.shape[2], predictor_array.shape[0]))
# feed into the model
model = Sequential()
model.add(LSTM(8, input_shape=(predictor_array.shape[1],predictor_array.shape[2]), return_sequences=True)) # the number of neurons here can be anything
model.add(LSTM(2, return_sequences=True)) # should I use an activation function here? the number of neurons here must be equal to the # of groups we are predicting
model.summary()
# _________________________________________________________________
# Layer (type) Output Shape Param #
# =================================================================
# lstm_62 (LSTM) (None, 3, 8) 384
# _________________________________________________________________
# lstm_63 (LSTM) (None, 3, 2) 88
# =================================================================
# Total params: 472
# Trainable params: 472
# Non-trainable params: 0
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # is it valid to use crossentropy and accuracy as metric?
model.fit(predictor_array, response_array, epochs=10, batch_size=1)
model_preds = model.predict_classes(predictor_array) # not gonna worry about train/test split here
model_preds.shape # should return (12, 3, 2) or (# of records, # of timestamps, # of groups which are a and b)
# (12, 3)
model_preds
# array([[1, 0, 0],
# [0, 0, 0],
# [1, 0, 0],
# [0, 0, 0],
# [1, 0, 0],
# [0, 0, 0],
# [0, 0, 0],
# [0, 0, 0],
# [0, 0, 0],
# [0, 0, 0],
# [1, 0, 0],
# [0, 0, 0]])
最佳答案
我会依次回答所有问题
how do I get this working so that the model would forecast the next N sequences for both groups?
L
是计算损失,
p
是网络预测和
y
是目标值。
nan
为损失。
model = Sequential()
model.add(LSTM(8, input_shape=(predictor_array.shape[1],predictor_array.shape[2]), return_sequences=True))
model.add(LSTM(2, return_sequences=True))
model.add(TimeDistributed(Dense(2, activation="sigmoid")))
model.summary()
... is it valid to attempt to output both A and B sequences by a single model or should I fit 2 separate models ... ?
... the prediction output is of shape (12, 3) when I would have expected it to be (12, 2) -- am I doing something wrong here ... ?
As far as the output LSTM layer is concerned, would it be a good idea to use an activation function here, such as sigmoid? Why/why not?
Is it valid to use a classification type loss (binary cross-entropy) and metrics (accuracy) for optimizing a sequence?
Is an LSTM model an optimal choice here? Does anyone think that a CRF or some HMM-type model would work better here?
关于tensorflow - 使用 LSTM 进行多元二进制序列预测,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53977695/
我无法准确理解 LSTM 单元的范围——它如何映射到网络层。来自格雷夫斯 (2014): 在我看来,在单层网络中,layer = lstm 单元。这实际上如何在多层 rnn 中工作? 三层RNN LS
这是代码 model = Sequential() model.add(LSTM(256, input_shape=(None, 1), return_sequences=True)) model.a
为什么我们需要在pytorch中初始化LSTM中的隐藏状态h0。由于 h0 无论如何都会被计算并被覆盖?是不是很像 整合一个一 = 0 一个= 4 即使我们不做a=0,也应该没问题.. 最佳答案 重点
我正在尝试使用 LSTM 在 Deeplearning4j 中进行一些简单的时间序列预测,但我很难让它工作。 我有一个简单的文本文件,其中包含如下所示的数字列表,并希望网络学习预测下一个数字。 有没有
在大量阅读和绘制图表之后,我想我已经提出了一个模型,我可以将其用作更多测试我需要调整哪些参数和功能的基础。但是,我对如何实现以下测试用例感到困惑(所有数字都比最终模型小几个数量级,但我想从小处着手):
我正在尝试实现“Livelinet:用于预测教育视频中的活力的多模式深度循环神经网络”中的结构。 为了简单说明,我将 10 秒音频剪辑分成 10 个 1 秒音频剪辑,并从该 1 秒音频剪辑中获取频谱图
我正在 Tensorflow 中制作 LSTM 神经网络。 输入张量大小为 92。 import tensorflow as tf from tensorflow.contrib import rnn
我正在尝试 keras IMDB 数据的示例,数据形状是这样的: x_train shape: (25000, 80) 我只是把keras例子的原始代码改成了这样的代码: model = Sequen
我需要了解如何使用 torch.nn 的不同组件正确准备批量训练的输入。模块。具体来说,我希望为 seq2seq 模型创建一个编码器-解码器网络。 假设我有一个包含这三层的模块,按顺序: nn.Emb
我很难概念化 Keras 中有状态 LSTM 和无状态 LSTM 之间的区别。我的理解是,在每个批处理结束时,在无状态情况下“网络状态被重置”,而对于有状态情况,网络状态会为每个批处理保留,然后必须在
nn.Embedding() 是学习 LSTM 所必需的吗? 我在 PyTorch 中使用 LSTM 来预测 NER - 此处是类似任务的示例 - https://pytorch.org/tutori
我正在尝试找出适合我想要拟合的模型的正确语法。这是一个时间序列预测问题,我想在将时间序列输入 LSTM 之前使用一些密集层来改进时间序列的表示。 这是我正在使用的虚拟系列: import pandas
我在理解堆叠式 LSTM 网络中各层的输入-输出流时遇到了一些困难。假设我已经创建了一个如下所示的堆叠式 LSTM 网络: # parameters time_steps = 10 features
LSTM 类中的默认非线性激活函数是 tanh。我希望在我的项目中使用 ReLU。浏览文档和其他资源,我无法找到一种简单的方法来做到这一点。我能找到的唯一方法是定义我自己的自定义 LSTMCell,但
在 PyTorch 中,有一个 LSTM 模块,除了输入序列、隐藏状态和单元状态之外,它还接受 num_layers 参数,该参数指定我们的 LSTM 有多少层。 然而,还有另一个模块 LSTMCel
没什么好说的作为介绍:我想在 TensorFlow 中将 LSTM 堆叠在另一个 LSTM 上,但一直被错误阻止,我不太明白,更不用说单独解决了。 代码如下: def RNN(_X, _istate,
有人可以解释一下吗?我知道双向 LSTM 具有前向和反向传递,但是与单向 LSTM 相比,它有什么优势? 它们各自更适合什么? 最佳答案 LSTM 的核心是使用隐藏状态保留已经通过它的输入信息。 单向
我想构建一个带有特殊词嵌入的 LSTM,但我对它的工作原理有一些疑问。 您可能知道,一些 LSTM 对字符进行操作,因此它是字符输入,字符输出。我想做同样的事情,通过对单词的抽象来学习使用嵌套的 LS
我编写了一个LSTM回归模型。它是最后一个LSTM层的BATCH_SIZE=1和RETURN_Sequence=True的模型。我还设置了VERIFICATION_DATA和耐心进行培训。但似乎存在一
给定一个训练有素的 LSTM 模型,我想对单个时间步执行推理,即以下示例中的 seq_length = 1。在每个时间步之后,需要为下一个“批处理”记住内部 LSTM(内存和隐藏)状态。在推理的最开始
我是一名优秀的程序员,十分优秀!