gpt4 book ai didi

r - R中卡方的事后检验

转载 作者:行者123 更新时间:2023-12-04 01:48:31 24 4
gpt4 key购买 nike

我有一张看起来像这样的 table 。

> dput(theft_loc)
structure(c(13704L, 14059L, 14263L, 14450L, 14057L, 15503L, 14230L,
16758L, 15289L, 15499L, 16066L, 15905L, 18531L, 19217L, 12410L,
13398L, 13308L, 13455L, 13083L, 14111L, 13068L, 19569L, 18771L,
19626L, 20290L, 19816L, 20923L, 20466L, 20517L, 19377L, 20035L,
20504L, 20393L, 22409L, 22289L, 7997L, 8106L, 7971L, 8437L, 8246L,
9090L, 8363L, 7934L, 7874L, 7909L, 8150L, 8191L, 8746L, 8277L,
27194L, 25220L, 26034L, 27080L, 27334L, 30819L, 30633L, 10452L,
10848L, 11301L, 11494L, 11265L, 11985L, 11038L, 12104L, 13368L,
14594L, 14702L, 13891L, 12891L, 12939L), .Dim = c(7L, 10L), .Dimnames = structure(list(
c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"), c("BAYVIEW", "CENTRAL", "INGLESIDE",
"MISSION", "NORTHERN", "PARK", "RICHMOND", "SOUTHERN", "TARAVAL",
"TENDERLOIN")), .Names = c("", "")), class = "table")

我跑了一个 chisq.test结果显着。我现在想运行一些成对测试,看看重要性在哪里。我尝试使用 fifer包和 chisq.post.test函数,但我收到一个错误,提示 out of workspace .

我还可以通过哪些其他方式运行多重比较测试?

最佳答案

这将起作用(在事后测试中尝试 chisq.test 而不是默认的 fisher.test(精确)):

(Xsq <- chisq.test(theft_loc))  # Prints test summary, p-value very small,
# Pearson's Chi-squared test
# data: theft_loc
# X-squared = 1580.1, df = 54, p-value < 2.2e-16 # reject null hypothesis for independence

library(fifer)
chisq.post.hoc(theft_loc, test='chisq.test')

带输出
 Adjusted p-values used the fdr method.

comparison raw.p adj.p
1 Sunday vs. Monday 0.0000 0.0000
2 Sunday vs. Tuesday 0.0000 0.0000
3 Sunday vs. Wednesday 0.0000 0.0000
4 Sunday vs. Thursday 0.0000 0.0000
5 Sunday vs. Friday 0.0000 0.0000
6 Sunday vs. Saturday 0.0000 0.0000
7 Monday vs. Tuesday 0.0000 0.0000
8 Monday vs. Wednesday 0.0000 0.0000
9 Monday vs. Thursday 0.0000 0.0000
10 Monday vs. Friday 0.0000 0.0000
11 Monday vs. Saturday 0.0000 0.0000
12 Tuesday vs. Wednesday 0.1451 0.1451
13 Tuesday vs. Thursday 0.0000 0.0000
14 Tuesday vs. Friday 0.0000 0.0000
15 Tuesday vs. Saturday 0.0000 0.0000
16 Wednesday vs. Thursday 0.0016 0.0017
17 Wednesday vs. Friday 0.0000 0.0000
18 Wednesday vs. Saturday 0.0000 0.0000
19 Thursday vs. Friday 0.0000 0.0000
20 Thursday vs. Saturday 0.0000 0.0000
21 Friday vs. Saturday 0.0000 0.0000

正如我们所看到的,除了一对之外的所有成对测试都是显着的,我们可以使用不同的 p-value-correction也是(通过将 control 从默认 fdr 更改为 bonferroni )。

关于r - R中卡方的事后检验,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42096271/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com