- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我使用 MobileNet 和 TensorFlow 2 来区分 4 个非常相似的玩具。我有每个玩具的 750 张图片和一个包含 750 张“负面”图片的标签,没有任何玩具。
我之前为此使用过 MobileNet 并取得了相当程度的成功,但关于这种情况的某些事情导致了很多过度拟合(训练/验证准确性之间的差异约为 30-40%)。该模型在 3 个 epoch 中很快训练到约 99.8% 的训练准确率,但验证准确率停留在 75% 左右。验证数据集是输入图像的 20% 的随机集。在查看模型的准确性时,对其中一个玩具存在强烈偏见,而许多其他玩具被错误地识别为该玩具。
我已经尝试了几乎所有的方法来解决这个问题:
我在添加到 MobileNet 顶部的 Conv2D 层之后添加了 Dropout,并尝试了 0.2 和 0.9 之间的各种辍学率。
model = tf.keras.Sequential([
base_model,
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.GlobalAveragePooling2D(),
tf.keras.layers.Dense(label_count, activation='softmax')
])
model = tf.keras.Sequential([
base_model,
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.GlobalAveragePooling2D(),
tf.keras.layers.Dense(label_count, activation='softmax')
])
最佳答案
由于模型过度拟合,您可以
Shuffle
数据,通过使用 shuffle=True
在 cnn_model.fit
.代码如下所示:history = cnn_model.fit(x = X_train_reshaped,
y = y_train,
batch_size = 512,
epochs = epochs, callbacks=[callback],
verbose = 1, validation_data = (X_test_reshaped, y_test),
validation_steps = 10, steps_per_epoch=steps_per_epoch, shuffle = True)
Early Stopping
.代码如下所示callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=15)
Regularization
.正则化代码如下所示(您也可以尝试 l1 Regularization
或 l1_l2 Regularization
):from tensorflow.keras.regularizers import l2
Regularizer = l2(0.001)
cnn_model.add(Conv2D(64,3, 3, input_shape = (28,28,1), activation='relu', data_format='channels_last',
activity_regularizer=Regularizer, kernel_regularizer=Regularizer))
cnn_model.add(Dense(units = 10, activation = 'sigmoid',
activity_regularizer=Regularizer, kernel_regularizer=Regularizer))
GlobalAveragePooling2D
与 MaxPool2D
BatchNormalization
. ImageDataGenerator
执行图像数据增强.引用 this link有关更多信息。 Pixels
不是 Normalized
,将像素值除以 255
也有帮助。 Pre-Trained Models
喜欢 ResNet
, Vgg Net
, DenseNet
(正如 Mohsin 在评论中提到的)关于tensorflow - 使用 TensorFlow 2 将 Dropout 添加到 MobileNet,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57524334/
我遇到过上述术语,但不确定它们之间的区别。 我的理解是 MC dropout 是正常的 dropout,它在测试期间也是活跃的,允许我们在多次测试运行中得到模型不确定性的估计。至于 channel-w
我正在从 deeplearning.ai 学习神经网络中的正则化类(class)。在 dropout 正则化中,教授说如果应用 dropout,计算的激活值将小于未应用 dropout 时(测试时)。
有两种方法可以执行dropout: torch.nn.Dropout torch.nn.function.Dropout 我问: 它们之间有区别吗? 我什么时候应该使用其中一种而不是另一种? 当我切换
根据此链接,keep_prob 的值必须在 (0,1] 之间: Tensorflow manual 否则我会得到值错误: ValueError: If keep_prob is not in (0,
我想在训练时从每个批处理的顺序 Keras 模型中的 dropout 层中提取并存储 dropout mask [1/0 数组]。我想知道在 Keras 中是否有一种直接的方法可以做到这一点,或者我是
来自 Keras 文档: dropout:在 0 和 1 之间 float 。要丢弃的单位分数 输入的线性变换。 recurrent_dropout:在 0 和 1 之间 float 。 drop 用
keras中的Dropout层与dropout和recurrent_droput参数有什么区别?它们都有相同的目的吗? 示例: model.add(Dropout(0.2)) # layer mod
我很困惑是使用 tf.nn.dropout 还是 tf.layers.dropout。 许多 MNIST CNN 示例似乎使用 tf.nn.droput,将 keep_prop 作为参数之一。 但它与
我目前正在尝试使用 Keras( tensorflow 后端)建立一个(LSTM)循环神经网络。我想使用带有 MC Dropout 的变分 dropout。我相信变分 dropout 已经通过 LST
tensorflow config dropout wrapper具有可以设置的三种不同的丢失概率:input_keep_prob、output_keep_prob、state_keep_prob。
tensorflow config dropout wrapper具有可以设置的三种不同的丢失概率:input_keep_prob、output_keep_prob、state_keep_prob。
我想在我的网络中添加 word dropout,以便我可以有足够的训练示例来训练“unk”标记的嵌入。据我所知,这是标准做法。假设unk token的索引为0,padding的索引为1(方便的话我们可
dropout 层只应该在模型训练期间使用,而不是在测试期间使用。 如果我的 Keras 序列模型中有一个 dropout 层,我是否需要在做之前做一些事情来删除或沉默它 model.predict(
我试图了解辍学对验证平均绝对误差(非线性回归问题)的影响。 无辍学 辍学率为 0.05 辍学率为 0.075 在没有任何 dropouts 的情况下,验证损失大于训练损失,如1所示。我的理解是,验证损
玩具回归示例。使用 dropout=0.0 这很好用并且成本降低了。使用 dropout=0.5 我得到错误: ValueError: Got num_leading_axes=1 for a 1-d
如何在训练期间更改 Dropout?例如 Dropout= [0.1, 0.2, 0.3] 我尝试将其作为列表传递,但我无法使其工作。 最佳答案 要在训练过程中改变 dropout 概率,您应该使用
我有一个用多个 LayerNormalization 层训练的模型,我不确定在激活 dropout 进行预测时简单的权重转移是否正常工作。这是我正在使用的代码: from tensorflow.ker
我正在训练一个带有 dropout 的神经网络。碰巧的是,当我将 dropout 从 0.9 减少到 0.7 时,训练数据数据的损失(交叉验证错误)也会减少。我还注意到,随着我减少 dropout 参
根据 Keras 文档,dropout 层在训练和测试阶段表现出不同的行为: Note that if your model has a different behavior in training
我已经在多个地方看到您应该在验证和测试阶段禁用 dropout,并且只在训练阶段保留它。有什么理由让这种情况发生吗?我一直找不到一个很好的理由,只是想知道。 我问的一个原因是因为我训练了一个带有 dr
我是一名优秀的程序员,十分优秀!