- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用以下代码生成 tfrecords 文件。
def generate_tfrecords(data_path, labels, name):
"""Converts a dataset to tfrecords."""
filename = os.path.join(args.tfrecords_path, name + '.tfrecords')
writer = tf.python_io.TFRecordWriter(filename)
for index, data in enumerate(data_path):
with tf.gfile.GFile(data, 'rb') as fid:
encoded_jpg = fid.read()
print(len(encoded_jpg)) # 17904
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = pil.open(encoded_jpg_io)
image = np.asarray(image)
print(image.shape) # 112*112*3
example = tf.train.Example(features=tf.train.Features(feature={
'height': _int64_feature(int(image.shape[0])),
'width': _int64_feature(int(image.shape[1])),
'depth': _int64_feature(int(3)),
'label': _int64_feature(int(labels[index])),
'image_raw': _bytes_feature(encoded_jpg)}))
writer.write(example.SerializeToString())
writer.close()
在上面的代码中,encoded_jpg
的长度为17904
,图像的形状为112*112*3
,这是不一致的。
当我使用以下代码解析 tfrecords 时:
def _parse_function(example_proto):
features = {'height': tf.FixedLenFeature((), tf.int64, default_value=0),
'width': tf.FixedLenFeature((), tf.int64, default_value=0),
'depth': tf.FixedLenFeature((), tf.int64, default_value=0),
'label': tf.FixedLenFeature((), tf.int64, default_value=0),
'image_raw': tf.FixedLenFeature((), tf.string, default_value="")}
parsed_features = tf.parse_single_example(example_proto, features)
height = tf.cast(parsed_features["height"], tf.int32) # 112
width = tf.cast(parsed_features["width"], tf.int32) # 112
depth = tf.cast(parsed_features["depth"], tf.int32) #3
label = parsed_features['label']
img = tf.decode_raw(parsed_features['image_raw'], tf.uint8, little_endian=True)
img = tf.reshape(img, [height, width, depth])
return img, label
当我使用上面的代码时,出现了以下错误:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Input to reshape is a tensor with 17904 values, but the requested shape has 37632
[[Node: Reshape = Reshape[T=DT_UINT8, Tshape=DT_INT32](DecodeRaw, Reshape/shape)]]
[[Node: IteratorGetNext = IteratorGetNext[output_shapes=[[?,?,?,?], [?]], output_types=[DT_UINT8, DT_INT64], _device="/job:localhost/replica:0/task:0/device:CPU:0"](Iterator)]]
我该如何解决这个问题。图片类型为png
,37632=112*112*3
。谢谢!
最佳答案
使用 decode_jpeg而不是 decode_raw
关于tensorflow - tf.decode_raw 和 tf.reshape 使用不同的图像大小,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47502981/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!