gpt4 book ai didi

python - 使用 .fit_generator() 在 keras 中训练 GAN

转载 作者:行者123 更新时间:2023-12-04 01:38:01 24 4
gpt4 key购买 nike

我一直在使用以下训练循环训练类似于 Pix2Pix 的条件 GAN 架构:

for epoch in range(start_epoch, end_epoch):
for batch_i, (input_batch, target_batch) in enumerate(dataLoader.load_batch(batch_size)):
fake_batch= self.generator.predict(input_batch)

d_loss_real = self.discriminator.train_on_batch(target_batch, valid)
d_loss_fake = self.discriminator.train_on_batch(fake_batch, invalid)
d_loss = np.add(d_loss_fake, d_loss_real) * 0.5

g_loss = self.combined.train_on_batch([target_batch, input_batch], [valid, target_batch])

现在这很好用,但效率不高,因为数据加载器很快就会成为时间瓶颈。我研究了 keras 提供的 .fit_generator() 函数,它允许生成器在工作线程中运行并且运行速度更快。

self.combined.fit_generator(generator=trainLoader,
validation_data=evalLoader
callbacks=[checkpointCallback, historyCallback],
workers=1,
use_multiprocessing=True)

我花了一些时间才发现这是不正确的,我不再分别训练我的生成器和鉴别器并且鉴别器根本没有被训练,因为它设置为 trainable = False 在组合模型中,基本上破坏了任何类型的对抗性损失,我还不如用 MSE 自己训练我的生成器。

现在我的问题是是否有一些解决方法,例如在自定义回调中训练我的鉴别器,它在每批 .fit_generator() 方法中触发?可以实现创建自定义回调,例如:

class MyCustomCallback(tf.keras.callbacks.Callback):
def on_train_batch_end(self, batch, logs=None):
discriminator.train_on_batch()

另一种可能性是将原始训练循环并行化,但恐怕我现在没有时间这样做。

最佳答案

更新:为此内置了排队器:

您可以在这个答案中查看使用它们的快速方法:https://stackoverflow.com/a/59214794/2097240


旧答案:

我正是为此目的创建了这个并行迭代器。我在训练中使用它;

这是你如何使用它:

for epoch, batchIndex, originalBatchIndex, xAndY in ParallelIterator(
generator,
epochs,
shuffle_bool,
use_on_epoch_end_from_generator_bool,
workers = 8,
queue_size=10):
#loop content
x_train_batch, y_train_batch = xAndY
model.train_on_batch(x_train_batch, y_train_batch)


generator 应该是您的 dataloader,但它需要是一个 keras.utils.Sequence,而不仅仅是一个 yield 生成器。

但如果需要的话,适应起来也不是很复杂。 (我只是不知道它是否会正确并行化,不过,我不知道 yield 循环是否可以正确并行化)
在下面的迭代器定义中,您应该替换:

  • len(keras_sequence)steps_per_epoch
  • keras_sequence[i]next(keras_sequence)
  • use_on_epoch_end = False

这是迭代器定义:


import multiprocessing.dummy as mp

#A generator that wraps a Keras Sequence and simulates a `fit_generator` behavior for custom training loops
#It will also work with any iterator that has `__len__` and `__getitem__`.
def ParallelIterator(keras_sequence, epochs, shuffle, use_on_epoch_end, workers = 4, queue_size = 10):

sourceQueue = mp.Queue() #queue for getting batch indices
batchQueue = mp.Queue(maxsize = queue_size) #queue for getting actual batches
indices = np.arange(len(keras_sequence)) #array of indices to be shuffled

use_on_epoch_end = 'on_epoch_end' in dir(keras_sequence) if use_on_epoch_end == True else False
batchesLeft = 0

# printQueue = mp.Queue() #queue for printing messages
# import threading
# screenLock = threading.Semaphore(value=1)
# totalWorkers= 0

# def printer():
# nonlocal printQueue, printing
# while printing:
# while not printQueue.empty():
# text = printQueue.get(block=True)
# screenLock.acquire()
# print(text)
# screenLock.release()

#fills the batch indices queue (called when sourceQueue is empty -> a few batches before an epoch ends)
def fillSource():
nonlocal batchesLeft

# printQueue.put("Iterator: fill source - source qsize = " + str(sourceQueue.qsize()))
if shuffle == True:
np.random.shuffle(indices)

#puts the indices in the indices queue
batchesLeft += len(indices)
# printQueue.put("Iterator: batches left:" + str(batchesLeft))
for i in indices:
sourceQueue.put(i)

#function that will load batches from the Keras Sequence
def worker():
nonlocal sourceQueue, batchQueue, keras_sequence, batchesLeft
# nonlocal printQueue, totalWorkers
# totalWorkers += 1
# thisWorker = totalWorkers

while True:
# printQueue.put('Worker: ' + str(thisWorker) + ' will try to get item')
index = sourceQueue.get(block = True) #get index from the queue
# printQueue.put('Worker: ' + str(thisWorker) + ' got item ' + str(index) + " - source q size = " + str(sourceQueue.qsize()))

if index is None:
break

item = keras_sequence[index] #get batch from the sequence
batchesLeft -= 1
# printQueue.put('Worker: ' + str(thisWorker) + ' batches left ' + str(batchesLeft))

batchQueue.put((index,item), block=True) #puts batch in the batch queue
# printQueue.put('Worker: ' + str(thisWorker) + ' added item ' + str(index) + ' - queue: ' + str(batchQueue.qsize()))

# printQueue.put("hitting end of worker" + str(thisWorker))

# #printing pool that will print messages from the print queue
# printing = True
# printPool = mp.Pool(1, printer)

#creates the thread pool that will work automatically as we get from the batch queue
pool = mp.Pool(workers, worker)
fillSource() #at this point, data starts being taken and stored in the batchQueue

#generation loop
for epoch in range(epochs):

#if not waiting for epoch end synchronization, always keeps 1 epoch filled ahead
if (use_on_epoch_end == False):
if epoch + 1 < epochs: #only fill if not last epoch
fillSource()

for batch in range(len(keras_sequence)):

#if waiting for epoch end synchronization, wait for workers to have no batches left to get, then call epoch end and fill
if use_on_epoch_end == True:
if batchesLeft == 0:
keras_sequence.on_epoch_end()
if epoch + 1 < epochs: #only fill if not last epoch
fillSource()
else:
batchesLeft = -1 #in the last epoch, prevents from calling epoch end again and again

#yields batches for the outside loop that is using this generator
originalIndex, batchItems = batchQueue.get(block = True)
yield epoch, batch, originalIndex, batchItems


# print("iterator epoch end")
# printQueue.put("closing threads")

#terminating the pool - add None to the queue so any blocked worker gets released
for i in range(workers):
sourceQueue.put(None)
pool.terminate()
pool.close()
pool.join()
# printQueue.put("terminated")

# printing = False
# printPool.terminate()
# printPool.close()
# printPool.join()


del pool,sourceQueue,batchQueue
# del printPool, printQueue

关于python - 使用 .fit_generator() 在 keras 中训练 GAN,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58785715/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com